480 research outputs found

    Bypassing a Reactive Jammer via NOMA-Based Transmissions in Critical Missions

    Full text link
    Wireless networks can be vulnerable to radio jamming attacks. The quality of service under a jamming attack is not guaranteed and the service requirements such as reliability, latency, and effective rate, specifically in mission-critical military applications, can be deeply affected by the jammer's actions. This paper analyzes the effect of a reactive jammer. Particularly, reliability, average transmission delay, and the effective sum rate (ESR) for a NOMA-based scheme with finite blocklength transmissions are mathematically derived taking the detection probability of the jammer into account. Furthermore, the effect of UEs' allocated power and blocklength on the network metrics is explored. Contrary to the existing literature, results show that gNB can mitigate the impact of reactive jamming by decreasing transmit power, making the transmissions covert at the jammer side. Finally, an optimization problem is formulated to maximize the ESR under reliability, delay, and transmit power constraints. It is shown that by adjusting the allocated transmit power to UEs by gNB, the gNB can bypass the jammer effect to fulfill the 0.99999 reliability and the latency of 5ms without the need for packet re-transmission.Comment: 6 pages, 7 figures, IEEE International Conference on Communications (ICC) 202

    Security Considerations in AI-Robotics: A Survey of Current Methods, Challenges, and Opportunities

    Full text link
    Robotics and Artificial Intelligence (AI) have been inextricably intertwined since their inception. Today, AI-Robotics systems have become an integral part of our daily lives, from robotic vacuum cleaners to semi-autonomous cars. These systems are built upon three fundamental architectural elements: perception, navigation and planning, and control. However, while the integration of AI-Robotics systems has enhanced the quality our lives, it has also presented a serious problem - these systems are vulnerable to security attacks. The physical components, algorithms, and data that make up AI-Robotics systems can be exploited by malicious actors, potentially leading to dire consequences. Motivated by the need to address the security concerns in AI-Robotics systems, this paper presents a comprehensive survey and taxonomy across three dimensions: attack surfaces, ethical and legal concerns, and Human-Robot Interaction (HRI) security. Our goal is to provide users, developers and other stakeholders with a holistic understanding of these areas to enhance the overall AI-Robotics system security. We begin by surveying potential attack surfaces and provide mitigating defensive strategies. We then delve into ethical issues, such as dependency and psychological impact, as well as the legal concerns regarding accountability for these systems. Besides, emerging trends such as HRI are discussed, considering privacy, integrity, safety, trustworthiness, and explainability concerns. Finally, we present our vision for future research directions in this dynamic and promising field

    The Role of Deep Learning in Advancing Proactive Cybersecurity Measures for Smart Grid Networks: A Survey

    Full text link
    As smart grids (SG) increasingly rely on advanced technologies like sensors and communication systems for efficient energy generation, distribution, and consumption, they become enticing targets for sophisticated cyberattacks. These evolving threats demand robust security measures to maintain the stability and resilience of modern energy systems. While extensive research has been conducted, a comprehensive exploration of proactive cyber defense strategies utilizing Deep Learning (DL) in {SG} remains scarce in the literature. This survey bridges this gap, studying the latest DL techniques for proactive cyber defense. The survey begins with an overview of related works and our distinct contributions, followed by an examination of SG infrastructure. Next, we classify various cyber defense techniques into reactive and proactive categories. A significant focus is placed on DL-enabled proactive defenses, where we provide a comprehensive taxonomy of DL approaches, highlighting their roles and relevance in the proactive security of SG. Subsequently, we analyze the most significant DL-based methods currently in use. Further, we explore Moving Target Defense, a proactive defense strategy, and its interactions with DL methodologies. We then provide an overview of benchmark datasets used in this domain to substantiate the discourse.{ This is followed by a critical discussion on their practical implications and broader impact on cybersecurity in Smart Grids.} The survey finally lists the challenges associated with deploying DL-based security systems within SG, followed by an outlook on future developments in this key field.Comment: To appear in the IEEE internet of Things journa

    6G White Paper on Machine Learning in Wireless Communication Networks

    Full text link
    The focus of this white paper is on machine learning (ML) in wireless communications. 6G wireless communication networks will be the backbone of the digital transformation of societies by providing ubiquitous, reliable, and near-instant wireless connectivity for humans and machines. Recent advances in ML research has led enable a wide range of novel technologies such as self-driving vehicles and voice assistants. Such innovation is possible as a result of the availability of advanced ML models, large datasets, and high computational power. On the other hand, the ever-increasing demand for connectivity will require a lot of innovation in 6G wireless networks, and ML tools will play a major role in solving problems in the wireless domain. In this paper, we provide an overview of the vision of how ML will impact the wireless communication systems. We first give an overview of the ML methods that have the highest potential to be used in wireless networks. Then, we discuss the problems that can be solved by using ML in various layers of the network such as the physical layer, medium access layer, and application layer. Zero-touch optimization of wireless networks using ML is another interesting aspect that is discussed in this paper. Finally, at the end of each section, important research questions that the section aims to answer are presented

    Jamming Detection and Classification in OFDM-based UAVs via Feature- and Spectrogram-tailored Machine Learning

    Get PDF
    In this paper, a machine learning (ML) approach is proposed to detect and classify jamming attacks against orthogonal frequency division multiplexing (OFDM) receivers with applications to unmanned aerial vehicles (UAVs). Using software-defined radio (SDR), four types of jamming attacks; namely, barrage, protocol-aware, single-tone, and successive-pulse are launched and investigated. Each type is qualitatively evaluated considering jamming range, launch complexity, and attack severity. Then, a systematic testing procedure is established by placing an SDR in the vicinity of a UAV (i.e., drone) to extract radiometric features before and after a jamming attack is launched. Numeric features that include signal-to-noise ratio (SNR), energy threshold, and key OFDM parameters are used to develop a feature-based classification model via conventional ML algorithms. Furthermore, spectrogram images collected following the same testing procedure are exploited to build a spectrogram-based classification model via state-of-the-art deep learning algorithms (i.e., convolutional neural networks). The performance of both types of algorithms is analyzed quantitatively with metrics including detection and false alarm rates. Results show that the spectrogram-based model classifies jamming with an accuracy of 99.79% and a false-alarm of 0.03%, in comparison to 92.20% and 1.35%, respectively, with the feature-based counterpart
    corecore