1,664 research outputs found

    Developing rehabilitation robots for the brain injured

    Get PDF

    Simple Obstacle Avoidance Algorithm for Rehabilitation Robots

    Get PDF
    The efficiency of a rehabilitation robot is improved by offering record-and-replay to operate the robot. While automatically moving to a stored target (replay) collisions of the robot with obstacles in its work space must be avoided. A simple, though effective, generic and deterministic algorithm for obstacle avoidance was developed. The algorithm derives a collision free path of the end-effector of the robot around known obstacles to the target location in O(n) time. In a case study, using the rehabilitation robot ARM, the performance of the algorithm was tested. As was a newly human-machine-interface offering this record-and-replay functionality to the use

    Designing rehabilitation robots for the brain injured

    Get PDF

    Encapsulating and representing the knowledge on the evaluation of an engineering system

    Get PDF
    This paper proposes a cross-disciplinary methodology for a fundamental question in product development: How can the innovation patterns during the evolution of an engineering system (ES) be encapsulated, so that it can later be mined through data mining analysis methods? Reverse engineering answers the question of which components a developed engineering system consists of, and how the components interact to make the working product. TRIZ answers the question of which problem-solving principles can be, or have been employed in developing that system, in comparison to its earlier versions, or with respect to similar systems. While these two methodologies have been very popular, to the best of our knowledge, there does not yet exist a methodology that reverseengineers and encapsulates and represents the information regarding the complete product development process in abstract terms. This paper suggests such a methodology, that consists of mathematical formalism, graph visualization, and database representation. The proposed approach is demonstrated by analyzing the design and development process for a prototype wrist-rehabilitation robot

    Designing Safety-Critical Rehabilitation Robots

    Get PDF

    Energy Efficiency of Gait Rehabilitation Robot: A Review

    Get PDF
    Gait rehabilitation robots have been reported to reduce impairment and regain functional abilities of gait disorder significantly. While energy efficiency is essential in the process of gait rehabilitation, few gait rehabilitation robots can achieve it. This paper aims to emphasize the importance of energy efficiency on the development of gait rehabilitation robots and conduct a view of rehabilitation training approaches as well as robots. Gaps and conflicts in traditional rehabilitation robots are analyzed based on the rehabilitation requirements and energy efficiency. While related research in reduction on energy consumption of human and optimization of human with device together during walking, is summarized. Finally, we discuss and highlight the future directions regarding the energy-efficient feature in gait rehabilitation robots

    Vibrations of cable-suspended rehabilitation robots

    Get PDF
    Rehabilitation robots help the treatment of diseases by performing cyclic exercises for a long period of time. These exercises must perform movements of the patient's limbs; thus, the robots are required to be flexible and safe. Among rehabilitation robots, cable robots are widely used due to their unique properties, such as being lightweight and the possibility of being equipped with magnetic hooks to improve both safety and ease of use. However, the elasticity and flexibility of cables result in vibrations of the payload and hooks. In this paper, the forced vibrations due to rehabilitation exercises are studied. Since the previous studies of the authors showed a weak coupling between longitudinal and transverse vibrations, a two-cable planar model for the study of transverse vibrations is developed. The model makes it possible to study the forced transverse vibrations due to both cable motion and robot motion. Stiffness and damping of the patient's arm are considered. Results show that the cable system exhibits a simple linear behavior when excited by robot motion and a non-linear behavior when excited by cable motion

    Brain computer interface based robotic rehabilitation with online modification of task speed

    Get PDF
    We present a systematic approach that enables online modification/adaptation of robot assisted rehabilitation exercises by continuously monitoring intention levels of patients utilizing an electroencephalogram (EEG) based Brain-Computer Interface (BCI). In particular, we use Linear Discriminant Analysis (LDA) to classify event-related synchronization (ERS) and desynchronization (ERD) patterns associated with motor imagery; however, instead of providing a binary classification output, we utilize posterior probabilities extracted from LDA classifier as the continuous-valued outputs to control a rehabilitation robot. Passive velocity field control (PVFC) is used as the underlying robot controller to map instantaneous levels of motor imagery during the movement to the speed of contour following tasks. In other words, PVFC changes the speed of contour following tasks with respect to intention levels of motor imagery. PVFC also allows decoupling of the task and the speed of the task from each other, and ensures coupled stability of the overall robot patient system. The proposed framework is implemented on AssistOn-Mobile - a series elastic actuator based on a holonomic mobile platform, and feasibility studies with healthy volunteers have been conducted test effectiveness of the proposed approach. Giving patients online control over the speed of the task, the proposed approach ensures active involvement of patients throughout exercise routines and has the potential to increase the efficacy of robot assisted therapies
    corecore