713 research outputs found

    Template Adaptation for Face Verification and Identification

    Full text link
    Face recognition performance evaluation has traditionally focused on one-to-one verification, popularized by the Labeled Faces in the Wild dataset for imagery and the YouTubeFaces dataset for videos. In contrast, the newly released IJB-A face recognition dataset unifies evaluation of one-to-many face identification with one-to-one face verification over templates, or sets of imagery and videos for a subject. In this paper, we study the problem of template adaptation, a form of transfer learning to the set of media in a template. Extensive performance evaluations on IJB-A show a surprising result, that perhaps the simplest method of template adaptation, combining deep convolutional network features with template specific linear SVMs, outperforms the state-of-the-art by a wide margin. We study the effects of template size, negative set construction and classifier fusion on performance, then compare template adaptation to convolutional networks with metric learning, 2D and 3D alignment. Our unexpected conclusion is that these other methods, when combined with template adaptation, all achieve nearly the same top performance on IJB-A for template-based face verification and identification

    Face Identification and Clustering

    Full text link
    In this thesis, we study two problems based on clustering algorithms. In the first problem, we study the role of visual attributes using an agglomerative clustering algorithm to whittle down the search area where the number of classes is high to improve the performance of clustering. We observe that as we add more attributes, the clustering performance increases overall. In the second problem, we study the role of clustering in aggregating templates in a 1:N open set protocol using multi-shot video as a probe. We observe that by increasing the number of clusters, the performance increases with respect to the baseline and reaches a peak, after which increasing the number of clusters causes the performance to degrade. Experiments are conducted using recently introduced unconstrained IARPA Janus IJB-A, CS2, and CS3 face recognition datasets

    Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos

    Full text link
    Despite rapid advances in face recognition, there remains a clear gap between the performance of still image-based face recognition and video-based face recognition, due to the vast difference in visual quality between the domains and the difficulty of curating diverse large-scale video datasets. This paper addresses both of those challenges, through an image to video feature-level domain adaptation approach, to learn discriminative video frame representations. The framework utilizes large-scale unlabeled video data to reduce the gap between different domains while transferring discriminative knowledge from large-scale labeled still images. Given a face recognition network that is pretrained in the image domain, the adaptation is achieved by (i) distilling knowledge from the network to a video adaptation network through feature matching, (ii) performing feature restoration through synthetic data augmentation and (iii) learning a domain-invariant feature through a domain adversarial discriminator. We further improve performance through a discriminator-guided feature fusion that boosts high-quality frames while eliminating those degraded by video domain-specific factors. Experiments on the YouTube Faces and IJB-A datasets demonstrate that each module contributes to our feature-level domain adaptation framework and substantially improves video face recognition performance to achieve state-of-the-art accuracy. We demonstrate qualitatively that the network learns to suppress diverse artifacts in videos such as pose, illumination or occlusion without being explicitly trained for them.Comment: accepted for publication at International Conference on Computer Vision (ICCV) 201

    A Proximity-Aware Hierarchical Clustering of Faces

    Full text link
    In this paper, we propose an unsupervised face clustering algorithm called "Proximity-Aware Hierarchical Clustering" (PAHC) that exploits the local structure of deep representations. In the proposed method, a similarity measure between deep features is computed by evaluating linear SVM margins. SVMs are trained using nearest neighbors of sample data, and thus do not require any external training data. Clusters are then formed by thresholding the similarity scores. We evaluate the clustering performance using three challenging unconstrained face datasets, including Celebrity in Frontal-Profile (CFP), IARPA JANUS Benchmark A (IJB-A), and JANUS Challenge Set 3 (JANUS CS3) datasets. Experimental results demonstrate that the proposed approach can achieve significant improvements over state-of-the-art methods. Moreover, we also show that the proposed clustering algorithm can be applied to curate a set of large-scale and noisy training dataset while maintaining sufficient amount of images and their variations due to nuisance factors. The face verification performance on JANUS CS3 improves significantly by finetuning a DCNN model with the curated MS-Celeb-1M dataset which contains over three million face images

    A Survey on Metric Learning for Feature Vectors and Structured Data

    Full text link
    The need for appropriate ways to measure the distance or similarity between data is ubiquitous in machine learning, pattern recognition and data mining, but handcrafting such good metrics for specific problems is generally difficult. This has led to the emergence of metric learning, which aims at automatically learning a metric from data and has attracted a lot of interest in machine learning and related fields for the past ten years. This survey paper proposes a systematic review of the metric learning literature, highlighting the pros and cons of each approach. We pay particular attention to Mahalanobis distance metric learning, a well-studied and successful framework, but additionally present a wide range of methods that have recently emerged as powerful alternatives, including nonlinear metric learning, similarity learning and local metric learning. Recent trends and extensions, such as semi-supervised metric learning, metric learning for histogram data and the derivation of generalization guarantees, are also covered. Finally, this survey addresses metric learning for structured data, in particular edit distance learning, and attempts to give an overview of the remaining challenges in metric learning for the years to come.Comment: Technical report, 59 pages. Changes in v2: fixed typos and improved presentation. Changes in v3: fixed typos. Changes in v4: fixed typos and new method

    DOMAIN ADAPTION FOR UNCONSTRAINED FACE VERIFICATION AND IDENTIFICATION

    Get PDF
    Face recognition has been receiving consistent attention in computer vision community for over three decades. Although recent advances in deep convolutional neural networks (DCNNs) have pushed face recognition algorithms to surpass human performance in most controlled situations, the unconstrained face recognition performance is still far from satisfactory. This is mainly because the domain shift between training and test data is substantial when faces are captured under extreme pose, blur or other covariates variations. In this dissertation, we study the effects of covariates and present approaches of mitigating the domain mismatch to improve the performance of unconstrained face verification and identification. To study how covariates affect the performance of deep neural networks on the large-scale unconstrained face verification problem, we implement five state-of-the-art deep convolutional networks (DCNNs) and evaluate them on three challenging covariates datasets. In total, seven covariates are considered: pose (yaw and roll), age, facial hair, gender, indoor/outdoor, occlusion (nose and mouth visibility, and forehead visibility), and skin tone. Some of the results confirm and extend the findings of previous studies, while others are new findings that were rarely mentioned before or did not show consistent trends. In addition, we demonstrate that with the assistance of gender information, the quality of a pre-curated noisy large-scale face dataset can be further improved. Based on the results of this study, we propose four domain adaptation methods to alleviate the effects of covariates. First, since we find that pose is a key factor for performance degradation, we propose a metric learning method to alleviate the effects of pose on face verification performance. We learn a joint model for face and pose verification tasks and explicitly discourage information sharing between the identity and pose metrics. Specifically, we enforce an orthogonal regularization constraint on the learned projection matrices for the two tasks leading to making the identity metrics for face verification more pose-robust. Extensive experiments are conducted on three challenging unconstrained face datasets that show promising results compared to state-of-the-art methods. Second, to tackle the negative effects brought by image blur, we propose two approaches. The first approach is an incremental dictionary learning method to mitigate the distribution difference between sharp training data and blurred test data. Some blurred faces called supportive samples are selected, which are used for building more discriminative classification models and act as a bridge to connect the two domains. Second, we propose an unsupervised face deblurring approach based on disentangled representations. The disentanglement is achieved by splitting the content and blur features in a blurred image using content encoders and blur encoders. An adversarial loss is added on deblurred results to generate visually realistic faces. We conduct extensive experiments on two challenging face datasets that show promising results. Finally, apart from the effects of pose and blur, face verification performance also suffers from the generic domain mismatch between source and target faces. To tackle this problem, we propose a template adaptation method for template-based face verification. A template-specific metric is trained to adaptively learn the discriminative information between test templates and the negative training set, which contains subjects that are mutually exclusive to subjects in test templates. Extensive experiments on two challenging face verification datasets yield promising results compared to other competitive methods

    Bounded-Distortion Metric Learning

    Full text link
    Metric learning aims to embed one metric space into another to benefit tasks like classification and clustering. Although a greatly distorted metric space has a high degree of freedom to fit training data, it is prone to overfitting and numerical inaccuracy. This paper presents {\it bounded-distortion metric learning} (BDML), a new metric learning framework which amounts to finding an optimal Mahalanobis metric space with a bounded-distortion constraint. An efficient solver based on the multiplicative weights update method is proposed. Moreover, we generalize BDML to pseudo-metric learning and devise the semidefinite relaxation and a randomized algorithm to approximately solve it. We further provide theoretical analysis to show that distortion is a key ingredient for stability and generalization ability of our BDML algorithm. Extensive experiments on several benchmark datasets yield promising results
    corecore