379 research outputs found

    Spot The Odd One Out: Regularized Complete Cycle Consistent Anomaly Detector GAN

    Full text link
    This study presents an adversarial method for anomaly detection in real-world applications, leveraging the power of generative adversarial neural networks (GANs) through cycle consistency in reconstruction error. Previous methods suffer from the high variance between class-wise accuracy which leads to not being applicable for all types of anomalies. The proposed method named RCALAD tries to solve this problem by introducing a novel discriminator to the structure, which results in a more efficient training process. Additionally, RCALAD employs a supplementary distribution in the input space to steer reconstructions toward the normal data distribution, effectively separating anomalous samples from their reconstructions and facilitating more accurate anomaly detection. To further enhance the performance of the model, two novel anomaly scores are introduced. The proposed model has been thoroughly evaluated through extensive experiments on six various datasets, yielding results that demonstrate its superiority over existing state-of-the-art models. The code is readily available to the research community at https://github.com/zahraDehghanian97/RCALAD.Comment: under revision of Applied Soft Computing Journa

    Adversarially Learned Anomaly Detection on CMS Open Data: re-discovering the top quark

    Full text link
    We apply an Adversarially Learned Anomaly Detection (ALAD) algorithm to the problem of detecting new physics processes in proton-proton collisions at the Large Hadron Collider. Anomaly detection based on ALAD matches performances reached by Variational Autoencoders, with a substantial improvement in some cases. Training the ALAD algorithm on 4.4 fb-1 of 8 TeV CMS Open Data, we show how a data-driven anomaly detection and characterization would work in real life, re-discovering the top quark by identifying the main features of the t-tbar experimental signature at the LHC.Comment: 16 pages, 9 figure

    Text Anomaly Detection with ARAE-AnoGAN

    Get PDF
    Generative adversarial networks (GANs) are now one of the key techniques for detecting anomalies in images, yielding remarkable results. Applying similar methods to discrete structures, such as text sequences, is still largely an unknown. In this work, we introduce a new GAN-based text anomaly detection method, called ARAE-AnoGAN, that trains an adversarially regularized autoencoder (ARAE) to reconstruct normal sentences and detects anomalies via a combined anomaly score based on the building blocks of ARAE. Finally, we present experimental results demonstrating the effectiveness of ARAE-AnoGAN and other deep learning methods in text anomaly detection

    Targeted collapse regularized autoencoder for anomaly detection: black hole at the center

    Full text link
    Autoencoders have been extensively used in the development of recent anomaly detection techniques. The premise of their application is based on the notion that after training the autoencoder on normal training data, anomalous inputs will exhibit a significant reconstruction error. Consequently, this enables a clear differentiation between normal and anomalous samples. In practice, however, it is observed that autoencoders can generalize beyond the normal class and achieve a small reconstruction error on some of the anomalous samples. To improve the performance, various techniques propose additional components and more sophisticated training procedures. In this work, we propose a remarkably straightforward alternative: instead of adding neural network components, involved computations, and cumbersome training, we complement the reconstruction loss with a computationally light term that regulates the norm of representations in the latent space. The simplicity of our approach minimizes the requirement for hyperparameter tuning and customization for new applications which, paired with its permissive data modality constraint, enhances the potential for successful adoption across a broad range of applications. We test the method on various visual and tabular benchmarks and demonstrate that the technique matches and frequently outperforms alternatives. We also provide a theoretical analysis and numerical simulations that help demonstrate the underlying process that unfolds during training and how it can help with anomaly detection. This mitigates the black-box nature of autoencoder-based anomaly detection algorithms and offers an avenue for further investigation of advantages, fail cases, and potential new directions.Comment: 16 pages, 4 figures, 4 table
    • …
    corecore