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Text Anomaly Detection with ARAE-AnoGAN

Tec Yan Yap

Illinois Wesleyan University, Bloomington IL 61701, USA
tyap@iwu.edu

Abstract. Generative adversarial networks (GANs) are now one of the
key techniques for detecting anomalies in images, yielding remarkable
results. Applying similar methods to discrete structures, such as text se-
quences, is still largely an unknown. In this work, we introduce a new
GAN-based text anomaly detection method, called ARAE-AnoGAN,
that trains an adversarially regularized autoencoder (ARAE) to recon-
struct normal sentences and detects anomalies via a combined anomaly
score based on the building blocks of ARAE. Finally, we present exper-
imental results demonstrating the effectiveness of ARAE-AnoGAN and
other deep learning methods in text anomaly detection.

1 Introduction

Anomaly detection is the task of identifying events or observations that deviate
from the expected behavior. This problem has applications in a wide variety
of domains such as fraud detection, network intrusion, defect detection, and
health monitoring. Various approaches have been developed for anomaly detec-
tion, including deviation analysis [11], unsupervised clustering methods [3], and
rule-based systems [29]. The focus of recent anomaly detection studies, however,
emphasizes on the use of generative adversarial networks (GANs), as surveyed
in [9]. The vast majority of these GAN-based approaches have been employed to
investigate anomalies in images and time-series, and to the best of our knowl-
edge, there is only one method that uses a GAN to detect anomalies in text
[10].

One reason that these GAN-based approaches have mostly been applied to
images and time-series is the fact that a GAN is designed to work with real-
valued, continuous data and has difficulties in directly generating discrete se-
quences of tokens, such as texts [14]. A GAN works by providing real-valued
gradients from a discriminator to a generator in order to guide the generator in
making a slight change to the generated data to become more realistic. If the
generated data is based on discrete tokens, the “slight change” guidance does not
work since a slight change to the discrete generated data does not correspond to
a discrete token. This is called the non-differential objective, and so far, there
are three types of methods that tackle this non-differentiable objective: policy
gradient methods [30], Gumbel-Softmax distribution [17], and adversarially reg-
ularized autoencoder (ARAE) [32].



In this work, we will leverage the previous work in GAN-based anomaly detec-
tion methods and GANs for discrete sequences to develop a GAN-based method
to detect anomalies in text. We present ARAE-AnoGAN, a semi-supervised
learning method that trains an adversarially regularized autoencoder (ARAE) to
model discrete sequences of normal training data and detects anomalies in text
via a combined anomaly score based on the building blocks of ARAE. Finally,
we present experimental results demonstrating the effectiveness of our approach
and other deep learning methods in text anomaly detection.

The rest of this paper is organized as follows. Section 2 presents an overview
of the related work. Section 3 provides a background on the concepts used in
ARAE-AnoGAN framework. In Section 4, we introduce our proposed ARAE-
AnoGAN framework. In Section 5, we show the experimental results comparing
our proposed ARAE-AnoGAN framework with three other frameworks on a
dataset. Finally, Section 6 summarizes the paper and suggests possible future
work.

2 Related Work

Anomaly detection in text is a challenging task and only a limited number of ap-
proaches have been developed in the past years to address this problem. [20] have
demonstrated the use of an one-class classifier as well as a simple autoencoder
to detect anomalies in text by training their models to learn representations of
normal text. Context Vector Data Description (CVDD) [25] extends the work
on one-class classifer and uses the publicly available pre-trained word embed-
ding models, such as word2vec [21], GloVe [22], and FastText [5,15] to convert
tokenized sentences to word embeddings that the one-class classfiers can use
to detect anomalies in text. CVDD uses a self-attention mechanism to trans-
form variable-length word embeddings of normal sentences to fixed-length text
representations. These text representations are also trained along with context
vectors, in order to capture the diverse topics within normal sentences (i.e. dis-
tinct yet non-anomalous topics).

The traditional and simplest anomaly detection method is to identify data
points that deviate from common statistical properties of a distribution, such as
mean, median, mode, and quantiles. Other methods, such as density-based and
clustering-based techniques, group normal data points into a dense neighborhood
or clusters and identify anomalies that are far away. Recent developments in
Generative Adversarial Networks (GANs) [12] have sparked new GAN-based
approaches to the anomaly detection problem. Anomaly detection using GANs
involves learning the distribution of normal samples and using features of GANs
to classify anomalies with an anomaly score. Most existing GAN-based anomaly
detection methods show promising, state-of-the-art results for images [26,31,2].
Few GAN-based approaches have been developed for sequential data, and those
that do exist only examine multivariate time-series data [18]. To date, there is
only one report of a GAN-based anomaly detection method in text. [10] uses a
GAN with the policy gradient method to model discrete sequences and detect
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anomalies via an anomaly score presented in AnoGAN. Our work is similar to
[10], but instead of using a GAN trained with the policy gradient method, we
use an autoencoder adversarially trained with a GAN to model text for anomaly
detection.

3 Background

To explain ARAE-AnoGAN in detail, it is essential to briefly introduce the
background of the concepts used in our framework.

3.1 Generative Adversarial Networks

GANs are a class of deep generative models that were initially introduced by
[12]. GANs were originally developed to generate realistic images, but since its
inception, GANs used for different functions, such as image captioning [24], style
transfer [33], and video generation [8]. A GAN trains two neural networks, a gen-
erator and a discriminator, to compete with each other. Here, we will use image
generation as an example to explain how GANs work. Given a training dataset
of images, the overall goal of a GAN is to generate images that look like they
should belong to the training dataset. To achieve this goal, the generator takes
random noise as an input and generates fake images that fool the discriminator
into thinking they are real. The discriminator takes in both real images from the
training dataset and fake images from the generator and outputs a verdict on
whether a given image is real or fake. The final verdict that the discriminator
outputs when the fake images are passed to the discriminator serves as crucial
information for the generator to generate realistic images. If the discriminator
identifies the generator’s outputs as real, it means that the generator did a good
job and there should be no change to how the generator generates the images.
On the other hand, if the discriminator identifies the generator’s outputs as
fake, it means that the generator failed to do a good job and should change
the way it generates the images. During training, the generator becomes better
at generating realistic images and the discriminator becomes more accurate at
identifying the fake images from the real, to a point where the discriminator can
no longer distinguish between the real and fake images anymore. This occurs
because the generator can now generate images that look similar to the real
images in the training dataset. Thus, a GAN has been successfully trained and
now the generator can generate images that look similar to the images in the
training set.

Other variations of GANs that have received much attention in the liter-
ature are Deep Convolutional GANs (DCGANs) [23] and Wasserstein GANs
(WGANs) [4]. DCGANs are a direct extension of the GANs mentioned above,
except that they use convolutional layers instead of fully connected layers in
both the generator and discriminator. Convolutional layers have been shown to
be wildly successful at representing images, and thus DCGANs are more suitable
for generating images. GANs may suffer a type of problem called mode collapse
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where the generator outputs the same image over and over again. This occurs
when the generator has found a way to generate images that can successfully
fool the discriminator again and again while the discriminator does not get bet-
ter at distinguishing the fake from the real. To mitigate the occurrence of mode
collapse, the generator of WGANs minimizes the distance between the data dis-
tribution observed in the training dataset and the distribution in the generated
outputs as opposed to simply trying to fool the discriminator.

3.2 Autoencoders

Autoencoders, like GANs, are a type of generative model that can generate
data points similar to the data points in the training dataset. The difference
between autoencoders and GANs lies in the structures and the goals each of
them are achieving during the training process. An autoencoder trains two neural
networks, an encoder and a decoder. Using image generation as an example, the
encoder takes in an image as an input and attempts to reduce the input to
a compressed encoded vector, also referred to as the latent vector. This latent
vector is then passed into the decoder, which attempts to recreate, or reconstruct
the input image. During training, the encoder becomes better at finding an
efficient way to compress and encode the input to a latent vector, while the
decoder gets better at reconstructing the input from the latent vector.

A few examples of the use cases of autoencoders include anomaly detec-
tion, dimension reduction, and image denoising. In our text anomaly detection
method, we employ a discrete autoencoder that takes in discrete sequences such
as text (arrays of sentences of words) rather than continuous values such as pix-
els in images, in order to reconstruct text. To detect anomalous sentences, we
train the discrete autoencoder to only reconstruct normal sentences. A trained
autoencoder can then classify an input as anomalous if the autoencoder cannot
fully reconstruct the given input.

Autoencoders have their limitations as well. When training is completed, the
latent vector can have a large range of values, resulting in a large amount of
gaps in the latent space distribution that the decoder does not know how to
reconstruct. If we pass in values that the encoder has not fed to the decoder
during training, the reconstructed output will not look like data points in the
training dataset. To remove these gaps in the latent vector, we can constrain the
latent vector to follow a known distribution, such as the normal distribution or
uniform distribution. This constraint is especially helpful for anomaly detection
since an autoencoder trained on a normal dataset should not have any gaps
in the latent space distribution so that the autoencoder will always be able to
reconstruct normal inputs.

There are three variations of autoencoders that have been developed to con-
strain the latent vector to follow a known distribution: variational autoencoders
[16], adversarial autoencoders [19], and adversarially regularized autoencoders
[32]. In our text anomaly detection method, we use ARAE to model sequences
of normal text since it is the only one out of the three variations that uses both
a generator and a discriminator of a WGAN to train the autoencoder. These
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three building blocks of ARAE, the autoencoder, generator, and discriminator,
will serve as important components for our anomaly score, which will be intro-
duced in Section 4.4.

3.3 AnoGAN

AnoGAN [26] is a deep convolutional generative adversarial network specifically
developed to detect anomalies in images. It uses DCGAN as the base model and
constructs an anomaly score using the generator and discriminator to evaluate
whether or not an input image is anomalous. The training process of AnoGAN
involves training a DCGAN with normal images so that the generator learns to
only generate images that look like they should belong to the normal dataset. If
an input image is significantly different than a generated image from the trained
generator, then there is a high possibility that the input image is anomalous.
However, since the generator is capable of generating a variety of normal images,
we need to perform an optimization process such that the generated image is
as similar as possible to the input image during testing. We can then use the
difference between the generated image (that was already optimized to look the
closest to the input image) and the input image, along with the verdict from
the discriminator on whether the input image is fake or real, to come up with
an anomaly score to evaluate whether or not the input image is anomalous.
The generator in this GAN-based anomaly detection method is analogous to the
decoder of an autoencoder trained on normal dataset. Both the generator and
decoder are capable of generating some representations of the normal images in
the dataset, and anomalies are detected if input images in the testing dataset
are different than the generated output of the generator or decoder.

3.4 Word Embeddings

Deep learning models take arrays of numbers as inputs. When working with text,
we need a way to convert strings to numbers before feeding them to the model.
One simple approach is to convert each word in the vocabulary to a one-hot
encoded vector. Consider the sentence “Have a good great day.” The vocabulary
(or unique words) in this sentence is (a, day, good, great, have). To convert each
word to a one-hot encoded vector, we will create a vector of zeros with length
equal to vocabulary size, then place a one in the index that corresponds to the
word. For example, the first word “a” in the vocabulary will be represented by
[1,0,0,0,0] and the second word will be converted to [0,1,0,0,0]. This approach is
naive and inefficient. If we think about these words in a 5-D space, where each
word occupies one dimension, “good” and “great” are as different as “day” and
“have,” which is not true. Furthermore, imagine that we have 100,000 words in
the vocabulary. The length of the one-hot encoded vector will be large, and thus,
increasing the input size and the parameters that need to be trained in our deep
learning model.

To overcome these problems, we can instead convert each word to a word
embedding. We first construct a dictionary where each word in the vocabulary
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is encoded with a unique integer (called index). We then apply word embed-
dings to each index, which converts each index to a vector of floating point
values. For example, the first word “a” in the vocabulary can be represented by
[0.4, 2.5, 2.4, 0.8] and the second word can be converted to [3.0, 0.1, 0.23, -0.2].
Words with similar meanings will have embeddings that are close to each other
and the size of the embeddings can be set to a number smaller than the vo-
cabulary size. Instead of specifying the values for the embedding manually, one
can train an embedding layer in a deep learning model or use pre-trained word
embeddings such as word2vec [21], GloVe [22], and FastText [5,15].

3.5 Long Short-Term Memory

Text is sequential in nature, as the order of words in a sentence carries informa-
tion. To deal with the sequential nature of text, after each word is converted to
an embedding vector, the embedding vector is passed into a Long Short-Term
Memory (LSTM) [13] cell. Multiple LSTM cells make up an LSTM layer, and
mulitple LSTM layer make up an LSTM network. LSTM networks are a class
of recurrent neural networks (RNNs) [28] that excel in learning from sequential
data such as text and time-series. One advantage of LSTMs over other types of
RNNs is their ability to retain information for a long period of time, allowing
for important information learned early in a sequence to remain relevant at the
end of the sequence when the model makes decisions.

Unlike a traditional feed-forward neural network where we assume that all
inputs (and outputs) are independent of each other, RNNs and LSTMs perform
the same operation to every element of an input sequence, with the output being
dependent on the previous computations. Figure 1 illustrates an unrolled RNN
layer, showing the RNN cell at various time steps.

Ht

Yt

Xt

H0

Y0

X0

H1

Y1

X1

Ht

Yt

Xt…

Initial States

Fig. 1: Recurrent Neural Network (RNN) at various time steps.

A RNN cell first takes in some initial states and the current input. After
processing these inputs with a neural network, the cell produces an output and
a hidden state. The hidden state, along with the next input, are then passed as
inputs to the RNN cell at the next time step, repeating this process until the
RNN cell processes all inputs in the sequence. The RNN cell is the same unit
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at different points in time, where the same parameters are used to process each
word at each time step. This is called parameter sharing and it helps in applying
the RNN model to sequences of variable lengths. While reading a sequence, if
the RNN model used different parameters for each step during training, it would
not generalize to unseen sequences of different lengths.

An LSTM cell has a similar flow as an RNN cell but applies additional
operations in order to keep relevant information for prediction and forget non-
relevant data. In addition to the hidden state, a cell state is also passed to the
next LSTM cell. As the cell state flows through the network, information is added
to or removed from the cell state via gates. There are a total of three gates in an
LSTM cell: a forget gate that decides what is relevant to keep from previous cell
state, an input gate that decides what is relevant to keep from current input,
and an output gate that decides what the next hidden state should be. Some
applications of LSTM include question-answering [27], handwriting recognition
[6], and music generation [7].

4 Text Anomaly Detection with ARAE-AnoGAN

4.1 Architecture Overview

Embedding

LSTM

1

LSTM

Embedding

24

LSTM

Embedding

8

Embedding

LSTM

1

argMax

… LSTM

Embedding

24

LSTM

Embedding

8

…

argMax argMax

u

Generator gθz Discriminator d⍵

ũ u, ũ
d⍵(u), d⍵(ũ)

Encoder encɸ Decoder decΨ

Initial States

<sos> quick dog <sos> quick dog

brown <eos>quick

Generative
Adversarial
Network

Discrete
Autoencoder

Fig. 2: ARAE architecture, composed of a discrete autoencoder and a generative
adversarial network.

Figure 2 illustrates the ARAE model used in our text anomaly detection
approach, which contains a discrete autoencoder (made up of an encoder and a
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decoder) and a generative adversarial network (made up of a generator and a
discriminator). The following paragraphs provide an overview of how sentences
are passed into our model and how anomalous sentences are detected.

Pre-processing Sentences in the training dataset come in variable lengths. Be-
fore passing a sentence into ARAE, we first need to pre-process the sentence.
In our approach, we set a maxiumum sentence length to a fixed number (a
tunable hyperparameter) and pad a sentence with zeros (<pad> tokens) if the
length of the sentence is smaller than the maximum sentence length. A start-
of-sequence token <sos> is added at the beginning of the input sentence for
both the encoder and decoder and an end-of-sequence token <eos> is added at
the end of the target sentence for the decoder. <sos> serves as an initiator for
the decoder to generate subsequent tokens, and <eos> allows the decoder to
generate variable length sentences. When this pre-processing step is completed,
each word in a sentence is converted to a unique number (index) using a pre-
defined dictionary where we can look-up the index that each word represents. For
example, the tokenized, pre-processed input sentence [<sos>, ‘you’, ‘are’,
‘beautiful’, <pad>, <pad>] will be converted to a vector [1, 5, 23, 19, 0, 0].
The target sentence [‘you’, ‘are’, ‘beautiful’, <eos>, <pad>, <pad>]
will be converted to [5, 23, 19, 2, 0, 0]. The array of indices is then passed to the
embedding layer, where it generates an embedding for each word in the input
sentence.

ARAE-AnoGAN Architecture Both the encoder and decoder use the LSTM
architecture to process the words in a sentence. The encoder takes in an array
of word embeddings and passes the last hidden state of its LSTM network as an
initial state to the LSTM network of the decoder. The decoder then takes in an
array of words, along with the last hidden state of the encoder, and outputs an
array of words that are similar to the input sentence. Essentially, the last hidden
state of the encoder LSTM network is the latent vector of an autoencoder. At
each time step of the decoder, the output of the LSTM produces a vector with
length equal to our vocabulary size. Each index at the output vector represents
the probability that the word corresponding to the index should belong to the
observation at that time step. We apply the argmax function to the output array
at each time step to obtain the index at which the value in the output array is
the highest to find the word that most likely belong to the observation at that
time step. We can then use our dictionary to look up the word represented by the
argmax index at each time step. In our text anomaly detection approach, if the
decoder does not recognize the last hidden state fed by the encoder, it will not
be able to output a sentence that looks similar to the sentences in the training
set, which are composed of normal sentences. Thus, an anomalous sentence has
been encoded, and subsequently, cannot be reconstructed by the decoder.

As mentioned in Section 3.2, we want to constrain the latent vector of an
autoencoder (in this case, the hidden state of the LSTM encoder) to follow some
known distribution. In this case, it is constrained to learn the distribution of the

8



generator, which generates outputs based also on a known distribution. During
training of ARAE, the discriminator treats the last hidden state of the encoder
as real and the output of the generator as fake. After ARAE is trained, the
generator should be able to generate hidden states that look similar to hidden
states of the encoder.

We then perform the optimization process described in AnoGAN for each
sentence in the testing dataset such that the output of the generator is the closest
to the real hidden state. Finally, we calculate an anomaly score for each sentence
in the testing set, as a linear combination of an autoencoder reconstruction loss,
an encoder loss, and a discriminator loss. A high anomaly score indicates that
the trained model is not capable of representing the sentence, hence, an anomaly.
A low anomaly score indicates a similar sentence has been seen during training,
hence, a normal sentence. More details on the anomaly score will be provided in
Section 4.4.

4.2 Problem Definition & Notation

The formal definition of the text anomaly detection problem is as follows:
Given a training dataset D with m normal sentences (D = {x(i)}mi=1 where

x(i) is the ith sentence in D) and a testing dataset D̃ with n normal and anoma-
lous sentences (D̃ = {(x̃(i), y(i))}ni=1 where y(i) = 0 indicates ith sentence in D̃
as normal and y(i) = 1 indicates ith sentence in D̃ as anomalous), the goal is
to model D with ARAE and detect anomalies in D̃ with an improved version of
the anomaly score A(x̃) presented in AnoGAN [26], which will be introduced in
Section 4.4. A high anomaly score A(x̃) indicates possible anomalous text within
D̃. A threshold τ can be chosen to predict the class rather than the probability,
where A(x̃) > τ indicates an anomaly.

Define X to be a set of discrete sequences (e.g. tokenized sentences) from
training dataset D with m normal text over a vocabulary V. An encoder with
parameters φ is the first part of the discrete autoencoder that learns a function
encφ : X 7→ U that maps the input space to code space (hidden state). A
decoder with parameters ψ is the second part of the discrete autoencoder that
learns a function decψ : U 7→ X̂ that maps the code space to reconstructed space.
The decoder is essentially a conditional decoder decψ(x|u) where it generates
each word based on the previous words with LSTM. In the GAN part of our
model, a generator g with parameters θ maps random variable z sampled from
a probability distribution (typically Gaussian or uniform) to the code space. A
discriminator d with parameters ω maps code space to a single scalar that
represents the probability that the code space comes from X (real) rather than
Z (fake). Table 1 summarizes the components of our model framework.

Having defined our overall architecture, we now move on to discuss how our
proposed ARAE-AnoGAN framework is trained and used to detect anomalies in
text.
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Network Function
Encoder encφ(x) = u
Decoder decψ(x|u) = x̂
Generator gθ(z) = ũ

Discriminator dω(u)/dω(ũ)

Table 1: Summary of networks and notations

4.3 Pipeline

The full pipeline is shown in Algorithm 1. First, as proposed in [32], the model
is trained with gradient descent across: (1) the encoder and decoder to minimize
reconstruction, (2) the discriminator, and (3) the encoder and generator adver-
sarially. When ARAE training is completed, we perform an optimization process
for each sentence x̃ in the testing dataset D̃ such that hidden state generated
by the generator is most similar to the hidden state of the encoder. During the
optimization process, we keep the parameters φ, ψ, θ, and ω unchanged but add
a new input layer to the generator with the same size as z. The parameters of
this new input layer are the only trainable weights during the iteration process.
This process will run for Γ steps, in the end yielding zΓ , which the generator
uses to generate ũ that is most similar to the real encoded vector u. We can then
use zΓ in our anomaly score for each sample in D̃.

Algorithm 1: ARAE-AnoGAN Pipeline
(a) Training
for each training epoch do:

(1) Train the encoder and decoder for reconstruction
Sample {x(i)}mi=1 from training dataset D and compute u(i) = encφ(x(i))
Backprop loss − 1

m

∑m

i=1 x
(i)log(decψ(x(i)|u(i))

(2) Train the discriminator
Sample {x(i)}mi=1 and {z(i)}mi=1 ∼ N (0, 1)
Compute u(i) = encφ(x(i)) and ũ(i) = gθ(z(i))
Backprop loss − 1

m

∑m

i=1 dω(u(i)) + 1
m

∑m

i=1 dω(ũ(i))
(3) Train the encoder and generator adversarially
Sample {x(i)}mi=1 and {z(i)}mi=1 ∼ N (0, 1)
Compute u(i) = encφ(x(i)) and ũ(i) = gθ(z(i))
Backprop loss 1

m

∑m

i=1 dω(u(i))− 1
m

∑m

i=1 dω(ũ(i))
(b) Testing
for each sample {x̃(i)}ni=1 in testing dataset D̃:

for 1, 2, ..., Γ do:
(4) Map code space to noise space
Add a new input layer to the generator gθ
Keeping φ, ψ, θ, and ω unchanged,
backprop loss αLres + βLenc + (1− α− β)Ldisc
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4.4 Anomaly Score

We propose to utilize the discrete autoencoder, generator, and discriminator
that have been trained jointly to represent normal sentences for text anomaly
detection. Expanding on the work of [26] (AnoGAN), our approach consists of
the following three parts:

1. Reconstruction Loss
Since the discrete autoencoder has been trained to reconstruct normal sen-
tences, it will output a similar normal sentence if the input sentence is nor-
mal. An anomalous sentence cannot be represented by this trained discrete
autoencoder, resulting in a high reconstruction loss, defined as:

Lres(x̃(i), φ, ψ) = −x̃(i) · log(decψ(x̃(i)|encφ(x̃(i)))) (1)

2. Encoder Loss The generator is trained to generate an hidden state ũ that
looks similar to the hidden state of the encoder when a normal sentence is
encoded. After the optimization process has been performed as described in
Section 4.3, the generator will generate a ũ that has values closest to u. If,
however, an anomalous sentence has been passed to the encoder to produce
u, the generator will fail to minimize the distance between ũ and u even
after the optimization process has been performed. Thus, we can define an
encoder loss as follows:

Lenc(x̃(i), zΓ , φ, θ) =
∥∥∥encφ(x̃(i))− gθ(zΓ )

∥∥∥
1

(2)

3. Discriminator Loss As suggested by [26] (AnoGAN), we use only the
output of an intermediate layer instead of the single scalar output of the
discriminator for our discriminator loss. As mentioned in Section 3.1, the
discriminator can no longer distinguish between the real and fake once the
GAN is successfully trained. The intermediate layer, however, preserves fea-
ture representation of the real data points. Thus, we can define a discrimi-
nator loss as the L1 distance between the feature representation of the real
encoded vector u and the feature representation of the generated encoded
vector ũ:

Ldisc(x̃(i), zΓ , φ, θ, ω) =
∥∥∥fω(encφ(x̃(i)))− fω(gθ(zΓ ))

∥∥∥
1

(3)

where fω(·) is the output of an intermediate layer of the discriminator dω.

Hence, for a test sample x̃(i), the anomaly score A(x̃(i)) is defined as the
weighted sum of the three components:

A(x̃(i)) = αLres + βLenc + (1− α− β)Ldisc (4)

To evaluate A(x̃(i)) with other test samples, we first compute A(x̃(i)) for all
{x̃(i)}ni=1 in testing dataset D̃, yielding a set S = {si = A(x̃(i)) : x̃(i) ∈ D̃}. We
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then apply normalization to scale the anomaly scores to have values in the range
of [0,1], following the method proposed by [2].

s′
i = si −min(S)

max(S)−min(S) (5)

This equation yields a set of normalized anomaly scores S′, which will be used
to evaluate the performance of our anomaly detection method.

5 Experiments

We compared the performance of ARAE-AnoGAN with other existing frame-
works quantitatively on the Reuters-2157811 dataset. Since anomaly detection
is a classification problem, the evaluation metrics we used are based around the
number of anomalies correctly identified.

5.1 Setup

The Reuters-215781 dataset was originally collected and labeled by Carnegie
Group, Inc. and Reuters, Ltd. and has been widely used for text classification
research. Each document comes with one or more related topics. In our ex-
periment, we only consider documents that contain fewer than 30 words (since
ARAE has only been shown to work successfully with short sentences) and have
exactly one topic with at least 100 samples for our training and testing dataset.
Even though the maximum sentence length is 30, we found that the average
sentence length in both the training and testing dataset to be around 8. We also
pre-process the dataset by converting text to lowercase and removing punctua-
tion, numbers, and stopwords using the stop words list from the nltk Python
library. In every anomaly detection experiment, we treat one topic as anomalous
with the rest as normal and only train the model with the respective normal
data. Then, we evaluate the test data, where normal samples are labeled y = 0
and anomalous samples are labeled y = 1.

5.2 Implementation Details

In order to understand more about the underlying structures of ARAE (originally
implemented in PyTorch2), we implemented our ARAE-AnoGAN framework
from scratch in Tensorflow 2.0 [1] instead of using the existing implementation.
For both the encoder and decoder, we used embedding layers of size 300 and
LSTM networks with depth 1 and size 300 for the hidden states. The generator
is a feed-forward neural network with 3 fully connected layers of size 100, 300,
and 300, respectively. The discriminator is also a feed-forward neural network
with 3 fully connected layers of size 300, 300, and 1, respectively. The size of
1 https://daviddlewis.com/resources/testcollections/reuters21578
2 https://github.com/jakezhaojb/ARAE
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the noise vector is 100, corresponding to the first layer of the generator. Full
details on the model implementation and hyperparameters can be found at this
project’s repository3.

5.3 Baselines

One way to measure the performance of our text anomaly detection framework is
to compare it with other frameworks. We consider three models to compare with
our framework. The first one is a simple discrete autoencoder, whose structure is
similar to the discrete autoencoder used in our ARAE-AnoGAN approach. The
second model is ARAE, where the discrete autoencoder is trained adversarially
with a GAN. For these two models, we only consider the reconstruction loss Lres
when calculating the anomaly score. The third and last model is called Context
Vector Data Description (CVDD) [25], a one-class classification method that
uses pre-trained word embeddings for anomaly detection on text.

5.4 Evaluation Metrics

In a classification problem, predicting probabilities of an observation belonging to
each class is more flexible than predicting classes directly. This flexibility comes
from the way that probabilities may be interpreted using different thresholds
that allow the model to optimize different metrics, such as the number of false
positives compared to the number of false negatives. For this experiment, we
utilize two common machine learning metrics, precision and recall, to evaluate
and compare our model with other baselines. Precision is defined as the ratio of
the number of true positives divided by the sum of the true positives and false
positives, which indicates the proportion of predicted anomalies that are truly
anomalous.

Precision = TP

(TP + FP ) (6)

Recall, on the other hand, is defined as the ratio of the number of true positives
divided by the sum of the true positives and the false negatives, which indicates
the proportion of actual anomalies that are correctly classified.

Recall = TP

(TP + FN) (7)

Precision and recall have an inverse relationship - improving precision typi-
cally reduces recall and vice versa. Thus, to fully evaluate the performance of a
model, we construct a precision-recall curve, which is a plot of the precision (y-
axis) and the recall (x-axis) for different thresholds. The model with the greatest
area under the precision-recall curve (also known as average precision) has the
highest overall precision and recall, and thus, performs the best.
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Fig. 3: Precision vs. recall plot of each framework.

Method Average Precision
Autoencoder 0.9493

ARAE 0.9532
CVDD 0.9485

ARAE-AnoGAN 0.9502
Table 2: Average precision of each framework.

5.5 Results

Figure 3 illutrates the precision-recall curve and Table 2 shows the average preci-
sion achieved by each framework in our experiment. We see that ARAE achieves
the best average precision, with ARAE-AnoGAN following after. One possible
reason that ARAE-AnoGAN did not outperform the rest of the frameworks could
stem from not having the best set of hyperparameters to successfully train the
GAN in ARAE. As noted by the developers of ARAE, ARAE is “quite sensitive
to hyperparameters.” Hyperparameters such as network size and learning rates
could be tuned to yield higher average precision for ARAE-AnoGAN. Another
possible reason is that the weights α and β in the anomaly score have not been
optimized. In our experiment, α and β were arbitrarily set to 0.6 and 0.2 respec-
tively. Future work could involve a hyperparameter search and an optimization
of α and β to yield the best results.

Even though ARAE-AnoGAN did not outperform all other frameworks, we
can see that in Figure 4, ARAE-AnoGAN does have the ability to assign low
3 https://github.com/tedyap/ARAE-AnoGAN
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Fig. 4: Histogram of normalized anomaly scores from ARAE-AnoGAN for both
normal and anomalous sentences.

anomaly scores to normal sentences and high anomaly scores to anomalous sen-
tences. According to Figure 4, if we set the threshold τ to around 0.38, ARAE-
AnoGAN will be able to successfully identify most of the anomalous sentences.

6 Conclusion

In this paper, we have explored the possibility of using GANs for text anomaly
detection. We introduce ARAE-AnoGAN, a GAN-based approach that utilizes
a discrete autoencoder, a generator, and a discriminator trained on normal sen-
tences to detect anomalous sentences using an anomaly score.

Since this is an early adoption of GANs for text anomaly detection, there are
many interesting issues that are worth investigating. For instance, no one has
yet utilized a GAN with the Gumbel-Softmax distribution to model normal text
and detect anomalies using an anomaly score. Another area worth exploring is to
develop a new model architecture to allow computing the anomaly score without
the computationally expensive Γ optimization process. Other future work could
involve training a deeper ARAE to model more complex and longer discrete
structures (e.g. documents).
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