16,972 research outputs found

    Regularized integral equations and fast high-order solvers for sound-hard acoustic scattering problems

    Get PDF
    This text introduces the following: (1) new regularized combined field integral equations (CFIE-R) for frequency-domain sound-hard scattering problems; and (2) fast, high-order algorithms for the numerical solution of the CFIE-R and related integral equations. Similar to the classical combined field integral equation (CFIE), the CFIE-R are uniquely-solvable integral equations based on the use of single and double layer potentials. Unlike the CFIE, however, the CFIE-R utilize a composition of the double-layer potential with a regularizing operator that gives rise to highly favorable spectral properties—thus making it possible to produce accurate solutions by means of iterative solvers in small numbers of iterations. The CFIE-R-based fast high-order integral algorithms introduced in this text enable highly accurate solution of challenging sound-hard scattering problems, including hundred-wavelength cases, in single-processor runs on present-day desktop computers. A variety of numerical results demonstrate the qualities of the numerical solvers as well as the advantages that arise from the new integral equation formulation

    Planewave density interpolation methods for 3D Helmholtz boundary integral equations

    Full text link
    This paper introduces planewave density interpolation methods for the regularization of weakly singular, strongly singular, hypersingular and nearly singular integral kernels present in 3D Helmholtz surface layer potentials and associated integral operators. Relying on Green's third identity and pointwise interpolation of density functions in the form of planewaves, these methods allow layer potentials and integral operators to be expressed in terms of integrand functions that remain smooth (at least bounded) regardless the location of the target point relative to the surface sources. Common challenging integrals that arise in both Nystr\"om and boundary element discretization of boundary integral equation, can then be numerically evaluated by standard quadrature rules that are irrespective of the kernel singularity. Closed-form and purely numerical planewave density interpolation procedures are presented in this paper, which are used in conjunction with Chebyshev-based Nystr\"om and Galerkin boundary element methods. A variety of numerical examples---including problems of acoustic scattering involving multiple touching and even intersecting obstacles, demonstrate the capabilities of the proposed technique

    Boundary integral equation methods for the solution of scattering and transmission 2D elastodynamic problems

    Get PDF
    We introduce and analyse various regularized combined field integral equations (CFIER) formulations of time-harmonic Navier equations in media with piece-wise constant material properties. These formulations can be derived systematically starting from suitable coercive approximations of Dirichlet-to-Neumann operators (DtN), and we present a periodic pseudodifferential calculus framework within which the well posedness of CIER formulations can be established. We also use the DtN approximations to derive and analyse OS methods for the solution of elastodynamics transmission problems. The pseudodifferential calculus we develop in this paper relies on careful singularity splittings of the kernels of Navier boundary integral operators, which is also the basis of high-order Nystrom quadratures for their discretizations. Based on these high-order discretizations we investigate the rate of convergence of iterative solvers applied to CFIER and OS formulations of scattering and transmission problems. We present a variety of numerical results that illustrate that the CFIER methodology leads to important computational savings over the classical CFIE one, whenever iterative solvers are used for the solution of the ensuing discretized boundary integral equations. Finally, we show that the OS methods are competitive in the high-frequency high-contrast regime.Catalin Turc gratefully acknowledges support from National Science Foundation (NSF) through contract DMS-1614270 and DMS-1908602
    • 

    corecore