10,910 research outputs found

    Regularity of the Einstein Equations at Future Null Infinity

    Full text link
    When Einstein's equations for an asymptotically flat, vacuum spacetime are reexpressed in terms of an appropriate conformal metric that is regular at (future) null infinity, they develop apparently singular terms in the associated conformal factor and thus appear to be ill-behaved at this (exterior) boundary. In this article however we show, through an enforcement of the Hamiltonian and momentum constraints to the needed order in a Taylor expansion, that these apparently singular terms are not only regular at the boundary but can in fact be explicitly evaluated there in terms of conformally regular geometric data. Though we employ a rather rigidly constrained and gauge fixed formulation of the field equations, we discuss the extent to which we expect our results to have a more 'universal' significance and, in particular, to be applicable, after minor modifications, to alternative formulations.Comment: 43 pages, no figures, AMS-TeX. Minor revisions, updated to agree with published versio

    Regularity Preserving but not Reflecting Encodings

    Full text link
    Encodings, that is, injective functions from words to words, have been studied extensively in several settings. In computability theory the notion of encoding is crucial for defining computability on arbitrary domains, as well as for comparing the power of models of computation. In language theory much attention has been devoted to regularity preserving functions. A natural question arising in these contexts is: Is there a bijective encoding such that its image function preserves regularity of languages, but its pre-image function does not? Our main result answers this question in the affirmative: For every countable class C of languages there exists a bijective encoding f such that for every language L in C its image f[L] is regular. Our construction of such encodings has several noteworthy consequences. Firstly, anomalies arise when models of computation are compared with respect to a known concept of implementation that is based on encodings which are not required to be computable: Every countable decision model can be implemented, in this sense, by finite-state automata, even via bijective encodings. Hence deterministic finite-state automata would be equally powerful as Turing machine deciders. A second consequence concerns the recognizability of sets of natural numbers via number representations and finite automata. A set of numbers is said to be recognizable with respect to a representation if an automaton accepts the language of representations. Our result entails that there is one number representation with respect to which every recursive set is recognizable

    Regular cell complexes in total positivity

    Get PDF
    This paper proves a conjecture of Fomin and Shapiro that their combinatorial model for any Bruhat interval is a regular CW complex which is homeomorphic to a ball. The model consists of a stratified space which may be regarded as the link of an open cell intersected with a larger closed cell, all within the totally nonnegative part of the unipotent radical of an algebraic group. A parametrization due to Lusztig turns out to have all the requisite features to provide the attaching maps. A key ingredient is a new, readily verifiable criterion for which finite CW complexes are regular involving an interplay of topology with combinatorics.Comment: accepted to Inventiones Mathematicae; 60 pages; substantially revised from earlier version

    Natural hp-BEM for the electric field integral equation with singular solutions

    Full text link
    We apply the hp-version of the boundary element method (BEM) for the numerical solution of the electric field integral equation (EFIE) on a Lipschitz polyhedral surface G. The underlying meshes are supposed to be quasi-uniform triangulations of G, and the approximations are based on either Raviart-Thomas or Brezzi-Douglas-Marini families of surface elements. Non-smoothness of G leads to singularities in the solution of the EFIE, severely affecting convergence rates of the BEM. However, the singular behaviour of the solution can be explicitly specified using a finite set of power functions (vertex-, edge-, and vertex-edge singularities). In this paper we use this fact to perform an a priori error analysis of the hp-BEM on quasi-uniform meshes. We prove precise error estimates in terms of the polynomial degree p, the mesh size h, and the singularity exponents.Comment: 17 page

    Projected likelihood contrasts for testing homogeneity in finite mixture models with nuisance parameters

    Full text link
    This paper develops a test for homogeneity in finite mixture models where the mixing proportions are known a priori (taken to be 0.5) and a common nuisance parameter is present. Statistical tests based on the notion of Projected Likelihood Contrasts (PLC) are considered. The PLC is a slight modification of the usual likelihood ratio statistic or the Wilk's Λ\Lambda and is similar in spirit to the Rao's score test. Theoretical investigations have been carried out to understand the large sample statistical properties of these tests. Simulation studies have been carried out to understand the behavior of the null distribution of the PLC statistic in the case of Gaussian mixtures with unknown means (common variance as nuisance parameter) and unknown variances (common mean as nuisance parameter). The results are in conformity with the theoretical results obtained. Power functions of these tests have been evaluated based on simulations from Gaussian mixtures.Comment: Published in at http://dx.doi.org/10.1214/193940307000000194 the IMS Collections (http://www.imstat.org/publications/imscollections.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    The bigravity black hole and its thermodynamics

    Full text link
    We argue that the Isham-Storey exact solution to bigravity does not describe black holes because the horizon is a singular surface. However, this is not a generic property of bigravity, but a property of a particular potential. More general potentials do accept regular black holes. For regular black holes, we compute the total energy and thermodynamical parameters. Phase transitions occur for certain critical temperatures. We also find a novel region on phase space describing up to 4 allowed states for a given temperature.Comment: 14 pages, 9 figure

    Indirect Image Registration with Large Diffeomorphic Deformations

    Full text link
    The paper adapts the large deformation diffeomorphic metric mapping framework for image registration to the indirect setting where a template is registered against a target that is given through indirect noisy observations. The registration uses diffeomorphisms that transform the template through a (group) action. These diffeomorphisms are generated by solving a flow equation that is defined by a velocity field with certain regularity. The theoretical analysis includes a proof that indirect image registration has solutions (existence) that are stable and that converge as the data error tends so zero, so it becomes a well-defined regularization method. The paper concludes with examples of indirect image registration in 2D tomography with very sparse and/or highly noisy data.Comment: 43 pages, 4 figures, 1 table; revise

    Mutation of Directed Graphs -- Corresponding Regular Expressions and Complexity of Their Generation

    Full text link
    Directed graphs (DG), interpreted as state transition diagrams, are traditionally used to represent finite-state automata (FSA). In the context of formal languages, both FSA and regular expressions (RE) are equivalent in that they accept and generate, respectively, type-3 (regular) languages. Based on our previous work, this paper analyzes effects of graph manipulations on corresponding RE. In this present, starting stage we assume that the DG under consideration contains no cycles. Graph manipulation is performed by deleting or inserting of nodes or arcs. Combined and/or multiple application of these basic operators enable a great variety of transformations of DG (and corresponding RE) that can be seen as mutants of the original DG (and corresponding RE). DG are popular for modeling complex systems; however they easily become intractable if the system under consideration is complex and/or large. In such situations, we propose to switch to corresponding RE in order to benefit from their compact format for modeling and algebraic operations for analysis. The results of the study are of great potential interest to mutation testing
    corecore