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Abstract Fomin and Shapiro conjectured that the link of the identity in the
Bruhat stratification of the totally nonnegative real part of the unipotent rad-
ical of a Borel subgroup in a semisimple, simply connected algebraic group
defined and split over R is a regular CW complex homeomorphic to a ball.
The main result of this paper is a proof of this conjecture. This completes the
solution of the question of Bernstein of identifying regular CW complexes
arising naturally from representation theory having the (lower) intervals of
Bruhat order as their closure posets. A key ingredient is a new criterion for
determining whether a finite CW complex is regular with respect to a choice
of characteristic maps; it most naturally applies to images of maps from regu-
lar CW complexes and is based on an interplay of combinatorics of the closure
poset with codimension one topology.

1 Introduction

In this paper, the following conjecture of Sergey Fomin and Michael Shapiro
from [11] is proven.

Conjecture 1.1 Let Y be the link of the identity in the totally nonnegative real
part of the unipotent radical of a Borel subgroup B in a semisimple, simply
connected algebraic group defined and split over R. Let Bu = B−uB− for u

in the Weyl group W . Then the stratification of Y into Bruhat cells Y ∩Bu is a
regular CW decomposition. Moreover, for each w ∈ W , Yw = ⋃

u≤w Y ∩ Bu
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is a regular CW complex homeomorphic to a ball, as is the link of each of its
cells.

This is done in Theorem 6.1. The result includes, for instance, the spe-
cial case that the link of the identity in the Bruhat stratification of the space
of upper triangular matrices with 1’s on the diagonal whose minors are all
nonnegative is a regular CW complex homeomorphic to a ball; more specif-
ically, this is the collection of upper triangular, totally nonnegative matrices
with 1’s on the diagonal and entries immediately above the diagonal summing
to a positive constant, stratified according to which minors are strictly posi-
tive and which are 0. The poset (partially ordered set) of closure relations is
Bruhat order.

This positively answers the question below regarding synthetic Schubert
varieties which appeared in a paper of Björner (see [4]), but was actually
posed by Joseph Bernstein (personal communication, Anders Björner):

Question 1.2 It would be of considerable interest to know which (CW) posets
can be reasonably interpreted as face posets of cellular decompositions of
complex algebraic varieties, and whether there is a synthetic construction
for doing so. In particular, can ‘synthetic Schubert varieties’ be naturally
associated with the (lower) Bruhat intervals of any Coxeter group.

Results of Björner [4] combine with results of Björner and Wachs [6] to
imply that each interval of Bruhat order is the closure poset of a regular CW
complex. This is what led to Question 1.2. Fomin and Shapiro proved in [11]
that the closure relations for Yw = ⋃

u≤w Y ∩ Bu are exactly those of the
lower interval (1,w) in Bruhat order, they obtained substantial homological
results regarding this space (especially in type A), and they formulated Con-
jecture 1.1. Lusztig interpreted Yw in [20] as the image of a continuous map
f(i1,...,id ) given by a reduced word (i1, . . . , id) for w, which is the viewpoint
we will take as well. The tools we develop in order to prove Conjecture 1.1
give a new approach to the general question of how to prove that the image
of a map from a polytope (or slightly more general regular CW complex)
which restricts to a homeomorphism on the interior but not necessarily on the
boundary is a regular CW complex homeomorphic to a ball.

Motivation for studying these totally nonnegative parts Yw of varieties
comes from a relationship observed by Lusztig to his theory of canonical
bases. The change of coordinates map resulting from applying a braid move
to a reduced word specifying a canonical basis is a tropicalized version of
the corresponding change of coordinates for a totally nonnegative variety
(cf. [20–22]). Trying to understand such changes of coordinates was also an
inspiration for the theory of cluster algebras (see [2, 13]). Our topological ap-
proach seems to give a somewhat new perspective on these changes of coor-
dinates. The explicit collapsing maps we develop and use later will give quite
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explicit information about fibers of a map whose inverse has been the subject
of considerable study (see e.g. [13] and the preprint [25]). For instance, we
deduce connectedness of fibers indirectly, using our Theorem 1.3 below.

Our starting point was the following new criterion for determining whether
a finite CW complex is regular with respect to a choice of characteristic maps.
See Sect. 2 for a review of the requisite definitions. This result below gave us
a route through which to approach Conjecture 1.1.

Conditions 1 and 2 below imply that the closure poset is graded by cell di-
mension, ensuring that the subsequent conditions make sense. Condition 3 is a
combinatorial condition which (together with Condition 2) enables injectivity
of attaching maps to be proven by an induction on difference in dimensions.
Condition 4 gives the base case for this induction. Notably absent is a more
general requirement of injectivity for the attaching maps.

Theorem 1.3 Let K be a finite CW complex with characteristic maps fα :
Bdim eα → eα . Then K is regular with respect to these characteristic maps
{fα} if and only if the following conditions hold:

(1) For each α, fα(Bdim eα ) is a union of open cells.
(2) For each fα , the preimages of the open cells of dimension dim eα − 1

form a dense subset of the boundary of Bdim eα .
(3) The closure poset of K is thin, i.e., each closed interval [u, v] with

rk(v) − rk(u) = 2 has exactly four elements. Additionally, each open
interval (u, v) with rk(v) − rk(u) > 2 is connected.

(4) For each α, the restriction of fα to the preimages of the open cells of
dimension exactly one less than eα is an injection.

(5) For each eσ ⊆ eα , fσ factors as an embedding ι : Bdim eσ → Bdim eα fol-
lowed by fα .

Theorem 1.3 is proven in Sect. 3. Examples are also given in Sect. 3
demonstrating that each of Conditions 2, 3, 4, and 5 is not redundant. Con-
dition 5 makes Theorem 1.3 seem likely to be applicable primarily to images
of maps from regular CW complexes, which is indeed how we will use The-
orem 1.3.

Our proof of Conjecture 1.1 relies critically upon the fact that condition 4,
codimension one injectivity, follows easily in our setting from the exchange
axiom for Coxeter groups (which is reviewed in Sect. 2). The analogous
Coxeter-theoretic statement is not true in higher codimensions, seemingly
demonstrating the efficacy of Theorem 1.3. One reason for interest in proving
stratified spaces to be regular CW complexes is the appealing feature of reg-
ular CW complexes that their topological structure (homeomorphism type) is
determined by the combinatorics of their posets of closure relations.

The proof of Conjecture 1.1 also involves the development of a combi-
natorial topological toolkit for performing a series of collapses on a convex
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polytope (which in our case is a simplex) in a manner that preserves regular-
ity and homeomorphism type at each step. Each collapse reduces the num-
ber of cells by eliminating some cells and identifying other cells with each
other. These collapses that we introduce in Theorem 4.21 (and its extension
in Corollary 4.24) are much in the spirit of elementary collapses, but with a
tighter control on the maps which enables us to preserve not just homotopy
type but homeomorphism type as well. They resemble the process of Bing
shrinking (cf. [3]) in that we extend collapsing maps across collars by giv-
ing paths of homeomorphisms deforming each collapsing map to the identity
map. We specifically needed to develop a class of collapses that would only
identify points having the same image under f(i1,...,id ), while restricting our-
selves to operations where we could control homeomorphism type and reg-
ularity. To this end, we collapse cells across families of curves which seem
typical enough of fibers of maps of interest arising e.g. in combinatorial rep-
resentation theory to be likely to be useful for other examples of interest as
well.

While these collapses are topological in nature, we have gone to consid-
erable effort to make the criteria one must check in order to use them as
combinatorial as possible. This is done not only to help us with the proof
of Conjecture 1.1, but also to facilitate possible future applications to other
stratified spaces of interest in combinatorics and representation theory such
as the double Bruhat decomposition for the totally nonnegative part of the
Grassmannian or the totally nonnegative part of the flag variety, as discussed
briefly in Sect. 1.2. Taken together, Theorem 1.3 and Theorem 4.21 provide
a fairly combinatorial general approach to proving that images of sufficiently
nice maps from polytopes are regular CW complexes homeomorphic to balls.

Another crucial ingredient in the proof of Conjecture 1.1 is the 0-Hecke
algebra associated to a Coxeter group W . The relations of the 0-Hecke alge-
bra capture in a completely natural way which faces of a simplex (indexed by
subwords of a reduced word) map to the same cell under f(i1,...,id ), and in fact
provide a dictionary from the topology of point identifications to the combi-
natorics of cell identifications through suppression of a parameter. Checking
the requirements for our collapses thereby translates to an analysis of proper-
ties of reduced and nonreduced words in this 0-Hecke algebra.

While f(i1,...,id ) itself is not a homeomorphism, we use the aforementioned
collapses to construct a quotient space upon which the induced map f(i1,...,id )

will act homeomorphically, allowing us to understand its image based upon
our understanding of this quotient space. These collapses eliminate exactly
the faces of a simplex indexed by the subwords of a reduced word (i1, . . . , id)

that are themselves non-reduced. Theorem 1.3 gives a way then to prove that
the induced map f(i1,...,id ) on the resulting quotient space is a homeomor-
phism. This is what guarantees that no further identification is necessary once



Regular cell complexes in total positivity 61

we have performed all of the identifications which the non-reduced subwords
necessitate.

The remainder of the introduction gives a more thorough overview of the
main ideas going into the proof of the Fomin-Shapiro Conjecture, including
the new tools leading up to it, then briefly discusses other possible future ap-
plications of our approach. Section 2 provides background and terminology in
topology, topological combinatorics, Coxeter groups and their 0-Hecke alge-
bras, and in total positivity theory, respectively; readers might find it useful to
read one or more of these background sections even prior to reading the proof
overview. Sections 3 and 4 establish the key topological tools, namely Theo-
rem 1.3 (our regularity criterion for CW complexes) and Theorem 4.21 (our
method for collapsing cells), respectively. Section 5 develops combinatorial
properties of the 0-Hecke algebra.

Then Sect. 6 pulls this all together in the (mainly combinatorial) proof
of Conjecture 1.1, with the most difficult combinatorics appearing in Lem-
ma 6.30. Theorem 6.32 assembles the various lemmas which together imply
that the complex resulting from our series of collapses is indeed regular and
homeomorphic to a ball. Finally, the Fomin-Shapiro Conjecture is proven in
Theorem 6.34. Throughout the paper, we deliberately include a high level of
detail, so as to help readers bridge between the combinatorics, topology, and
representation theory.

1.1 Proof overview

Following Lusztig [20], we realize the stratified spaces Yw from Conjec-
ture 1.1 as images of maps f(i1,...,id ) from polytopes (which in our case are
simplices) to spaces of matrices.

Let (i1, . . . , id) be a reduced word for w ∈ W . Consider the surjective
map f(i1,...,id ) : Rd

≥0 → Yw sending (t1, . . . , td) to the product of matrices
xi1(t1) · · ·xid (td) where xi(t) = In + tEi,i+1 in type A, and more generally
xi(t) = exp(tei) for ei a Chevalley generator. Lusztig proved that f(i1,...,id )

applied to R
d
>0 is a homeomorphism. On the other hand, f(i1,...,id ) is far from

injective on R
d
≥0, due to the relations (a) xi(u)xi(v) = xi(u + v) and (b) the

type A braid relations

(1) xi(u)xj (v) = xj (v)xi(u) for |j − i| > 1
(2) xi(a)xi+1(b)xi(c) = xi+1(

bc
a+c

)xi(a + c)xi+1(
ab

a+c
) for a, b, c > 0

and similar relations xi(t1)xj (t2)xi(t3) · · · = xj (t
′
1)xi(t

′
2)xj (t

′
3) · · · of degree

m(i, j) in other types, where m(i, j) is the order of sisj and (t ′1, . . . , t ′m(i,j))

is obtained from (t1, . . . , tm(i,j)) by a change of coordinates map as in [20].
We study the image of f(i1,...,id ) restricted to the intersection of R

d
≥0 with

the hyperplane
∑

ti = 1, denoting this domain by R
d
≥0 ∩ Sd−1

1 . This has the
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benefit of being compact while already reflecting the full structure of the im-
age of f(i1,...,id ) on domain R

d
≥0. This domain is a simplex, with faces spec-

ified by which parameters ti are positive and which are 0. Since xi(0) is the
identity, it is natural to index the faces of the simplex by the subwords of
(i1, . . . , id). Lusztig’s result for R

d
>0 together with the above relations im-

plies that f(i1,...,id ) restricted to the interior of a face is injective if and only if
the subword of (i1, . . . , id) indexing that face is a reduced word.

The above relations will enable us to construct for any face of the simplex
indexed by a nonreduced word a family of curves covering the face such
that each curve lives in a single fiber of f(i1,...,id ). These curves result from
the relations xi(u)xi(v) = xi(u + v) either directly or after a suitable series
of (long and short) braid moves. We will collapse each such non-reduced
face across a family of such curves. While every nonreduced expression will
admit a series of braid moves leading to such a “stutter” xi(u)xi(v), a serious
challenge to be overcome is that the requisite long braid moves give change
of coordinate maps which a priori are not even well-defined on the closures
of the cells to be collapsed, let alone homeomorphisms on them.

We get around this by doing certain other collapses earlier than a collapse
requiring long braid moves. Specifically, we choose the collapsing order so
that earlier identifications in the boundary of a cell requiring long braid moves
will ensure that the change of coordinates map will in fact be a well-defined
homeomorphism on each closed cell to be collapsed just prior to its collapse.
The key conceptual lemma behind these change of coordinates maps being
homeomorphisms is Lemma 6.20, while the technical details are handled in
Lemma 6.24.

To see which faces of the simplex should be identified with each other in
this manner, we suppress parameters, replacing xi(t) by xi for each t that is
positive, omitting the letters where t is 0. We thereby associate a so-called
x-expression to each face. An examination of which x-expressions corre-
spond to faces having the same image under f(i1,...,id ) yields the relations
(1) x2

i = xi together with the braid relations (2) xixj = xjxi for |j − i| > 1
and (3) xixi+1xi = xi+1xixi+1 in type A. Going beyond type A, we replace
(2) and (3) by analogous long braid relations xixjxi · · · = xjxixj · · · of de-
gree m(i, j) for each pair of Coxeter group generators {si, sj }. In this manner,
the (unsigned) 0-Hecke algebra of the Coxeter group W emerges. Two faces
of the simplex will have the same image under f(i1,...,id ) exactly when their
x-expressions represent the same element of the 0-Hecke algebra, or equiva-
lently, in the language of [18] if they have the same Demazure product.

In Sect. 4, we introduce a general class of collapsing maps which may be
performed sequentially on a polytope, preserving homeomorphism type and
regularity on the resulting quotient cell complexes at each step. Each such
map is defined by first covering a polytope face with a family of parallel line
segments across which the face is collapsed, or more generally in subsequent
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steps covering a cell to be collapsed with a family of curves which we call
parallel-like (see Definition 4.7), due to their being the image of a family of
parallel line segments under a map g with certain convenient properties (such
as being a homeomorphism on the interior of the cell to be collapsed). The
following simple example already captures much of the idea of our collapses.

Example 1.4 Let �2 be the convex hull of (0,0), (1,0), (0,1/2) in R
2,

and let �1 be the convex hull of (0,0) and (1,0) in R
2. We will con-

struct a surjective, continuous function h : R2 → R
2 that acts homeomor-

phically on R
2 − �2 sending it to R

2 − �1. The idea is to map paral-
lel, vertical line segments covering �2 onto their endpoints in �1, then
take a neighborhood N of �2, specifically a collar for R2 − �2, and de-
fine h in such a way that it stretches N to cover �2 by mapping extensions
of the parallel line segments surjectively onto the extended segments. For
0 ≤ x ≤ 1 and 0 ≤ y ≤ −x/2 + 1/2, let h(x, y) = (x,0). For 0 ≤ x ≤ 1
and −x/2 + 1/2 ≤ y ≤ 1, let h(x, y) = (x,

y−1/2+x/2
1/2+x/2 ). For −1 ≤ x ≤ 0 and

0 ≤ y ≤ −x/2 + 1/2, let h(x, y) = (x, y −x
−x/2+1/2). For −1 ≤ x ≤ 0 and

−x/2 + 1/2 ≤ y ≤ 1, let h(x, y) = (x,−1 + 2y). Let h act as the identity
outside R = {(x, y) : −1 ≤ x ≤ 1,0 ≤ y ≤ 1}.
Remark 1.5 See pp. 42–43 in Spanier [32] for a closely related, though fun-
damentally different, homeomorphism also given by explicit maps.

Each curve in a family of parallel-like curves will have one endpoint in a
closed cell G1 in the boundary of the cell F to be collapsed, and the other end-
point in another closed boundary cell G2. In Example 1.4, this is the segment
from (0,1/2) to (1,0), and the segment from (0,0) to (1,0), respectively. The
collapse given by this family of curves will map each curve to its endpoint in
G2, stretching a collar for the closed complement of F within the boundary
of a cell of dimension one higher than F so as to homeomorphically cover F

by the part of this closed collar given by G1 × [0,1]. Convexity of each face
of the polytope whose image we are studying will enable this stretching to be
accomplished by a continuous map. Corollary 4.24 generalizes our collapsing
maps somewhat beyond polytopes to help accommodate requisite changes of
coordinates, using that these collapsing maps may be transferred from one
regular CW ball to a homeomorphic one, provided that both have the same
cell structure on the closed cell to be collapsed, with the homeomorphism
of regular CW complex restricting to a cell structure preserving one on this
closed cell.

To relate this to our main application, notice e.g. that {(t1, t2, t3) ∈ R
3
≥0|t1 +

t2 = k1,2 and t3 = k3} for the various choices of constants k1,2, k3 adding to 1
give parallel line segments covering the simplex {(t1, t2, t3) ∈ R

3
≥0|

∑
ti = 1}

and comprising exactly the fibers of the map (t1, t2, t3) 	→ x1(t1)x1(t2)x2(t3).
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All of our families of parallel-like curves will result either directly from stut-
tering pairs xi(u)xi(v) of consecutive letters in a non-reduced expression
yielding such parallel line segments, or as families of curves obtained from
such parallel line segments by the composition of a series of earlier collapsing
maps (that restrict to homeomorphisms on the interior of the cell now under
consideration) with the change of coordinate homeomorphisms given by the
long braid moves used to create a stuttering pair.

We require the following properties for parallel-like curves:

(1) Distinct initial points condition (DIP): the endpoints of the parallel-like
curves in G1 are distinct.

(2) Distinct endpoints condition (DE): for each nontrivial curve in the collec-
tion, its endpoints in G1 and G2 are distinct, by virtue of open cells in G1
and G2, respectively, not having already been identified with each other.

We also require a combinatorial property of the collapses themselves:

• Least upper bound condition (LUB): whenever two cells are identified by
the collapse of a cell that is a least upper bound for the pair of them just
prior to the collapse, then all cells that are least upper bounds for them just
prior to the collapse also get collapsed in that same step.

The condition (DIP) is needed for the collapsing map across parallel-like
curves to be well-defined, since the endpoint of each curve in G1 (along with
the rest of the curve) is mapped onto the other endpoint of the curve, which is
in G2. Condition (DE) will allow us to extend the parallel-like curves across a
collar for the closed complement of the cell being collapsed within the bound-
ary of a cell of dimension one higher, once we prove such a collar exists. The
proof that regularity is preserved under our collapses relies heavily on (LUB).

Collapses meeting the more precisely formulated versions of these condi-
tions given later will automatically meet a further condition we call the in-
ductive manifold condition, namely that the closure of the complement of an
i-cell within the boundary of an (i +1)-cell is a compact topological manifold
with boundary, hence has a collar. This will allow us to extend the collaps-
ing map for a low dimensional cell F from a low-dimensional subcomplex
where it is most naturally defined to our entire complex; this extension pro-
cess in based upon the existence of requisite collars together with the fact that
our particular collapsing maps admit approximations by homeomorphisms; in
fact, we use that each comes with a path of homeomorphisms to the identity
map, enabling each collapsing map to be deformed to the identity map across
the layers of a collar.

Checking the above conditions for a family of curves covering a cell to
be collapsed in our main application will rely on a combinatorial analysis
of which cells have been identified with each other at the time of each col-
lapse. In preparation for these combinatorial arguments, we develop in Sect. 5
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properties of the 0-Hecke algebra, based mainly on the following convenient
notion: we say that a pair of letters {ir , is} for r < s in a non-reduced word
(i1, . . . , id) is a deletion pair if (ir , . . . , is−1) and (ir+1, . . . , is) are both re-
duced while (ir , . . . , is) is non-reduced. The 0-Hecke algebra lacks a cancel-
lation law, adding to the challenge of working with it. However, focusing on
deletion pairs will enable some critical properties of Coxeter groups to be
transferred to the 0-Hecke algebra, using the fact that reduced expressions
in the 0-Hecke algebra are exactly the reduced expressions in the associated
Coxeter group.

Section 6 gives a particular series of cell collapses, performed sequentially
on a simplex R

d
≥0 ∩Sd−1

1 , to produce a regular CW complex (Rd
≥0 ∩Sd−1

1 )/ ∼
homeomorphic to a ball. The guiding principle behind our choice of ordering
is that we want a collapsing order amenable to proof by induction on d . This
will allow us to assume all our results for smaller d; this guarantees when we
perform a long braid move on the expression associated to a face to be col-
lapsed that all possible identifications based on subexpressions of the expres-
sion to be braided will have already been done. To this end, we collapse faces
in an order consistent with linear order on the position of the right endpoint of
the leftmost deletion pair in the (highest priority) x-expression representing
that face. This implies at the time of the collapse of a face whose leftmost
deletion pair is {ir , is} that all possible point identifications based on letters
strictly to the left of position s will have already been done, so that we may
apply braid moves to the segment from positions r through s − 1 so as to
create a stutter with the letter at position s.

In this manner, we collapse away all faces of the simplex indexed by non-
reduced words based on point and cell identifications which are clearly neces-
sary. However, this still leaves the challenge of proving that these identifica-
tions are enough, that there are no remaining instances of two points mapping
to the same place under the induced quotient space map f (i1,...,id ). This is
where we turn to Theorem 1.3, to prove that f (i1,...,id ) is indeed a homeomor-

phism from (Rd
≥0 ∩ Sd−1

1 )/ ∼ to Yw .
Corollary 3.9 sets up the framework in which Theorem 1.3 will be used,

both in this paper and most likely in other applications as well. It focuses on
images of maps from regular CW complexes having a maximal cell, with the
further requirement that the map be a homeomorphism on this open big cell. It
singles out conditions 3 and 4 of Theorem 1.3 to be checked for the particular
application, with conditions 1, 2 and 5 then following automatically from the
general set-up.

In the setting of the Fomin-Shapiro Conjecture, condition 3 is imme-
diate from the result of Björner and Wachs that Bruhat order is thin and
shellable [6]. The idea we will use in Lemma 6.33 to verify condition 4 is
as follows. Given a reduced expression si1 · · · sid , the Coxeter group element
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obtained by deleting a single letter siu cannot be the same as the Coxeter
group element obtained by deleting a letter siv for u �= v. This combines with
Lusztig’s result that f(i1,...,id ) restricts to a homeomorphism on the interior of
a cell indexed by reduced word (i1, . . . , id) to allow us to verify codimension
one injectivity. The point is that approaching the boundary of a cell by letting
a single parameter ti go to 0 as opposed to approaching the boundary by let-
ting a different, individual parameter tj go to 0 must give points in distinct
cells, hence distinct points.

We will use the map f (i1,...,id ) : (Rd
≥0 ∩ Sd−1

1 )/ ∼→ Yw induced from
f(i1,...,id ) along with its restriction to various closed cells as the characteristic
maps with respect to which we will prove that Yw is a regular CW complex.
Our results will imply that ∼ identifies exactly those points having the same
image under Lusztig’s map f(i1,...,id ) : (t1, . . . , td) → xi1(t1) · · ·xid (td) given
by any reduced word (i1, . . . , id) for w ∈ W . We will prove in Theorem 6.34
that f (i1,...,id ) is a homeomorphism from (Rd

≥0 ∩ Sd−1
1 )/∼ to Ysi1 ···sid with

f (i1,...,id ) sending the open cells of (Rd
≥0 ∩ Sd−1

1 )/∼ to the cells Yo
u with

u ≤ w = si1 · · · sid , completing the proof of Conjecture 1.1.

1.2 Potential further applications

Lusztig and Rietsch have studied a combinatorial decomposition for the to-
tally nonnegative part of a flag variety, namely the decomposition into double
Bruhat cells (cf. [20] and [28]). Lusztig proved contractibility of the entire
space in [20] while Rietsch and Williams proved contractibility of each cell
closure in [30]. Williams conjectured in [35] that this is a regular CW complex
homeomorphic to a ball. It seems quite plausible that Theorem 1.3 together
with tools from Sect. 4 could also be used to prove that conjecture, though we
believe that significant further new ideas would also be needed.

Rietsch determined the closure poset of this decomposition in [28].
Williams proved in [35] that this poset is shellable and thin, implying it meets
Condition 3 of Theorem 1.3. Postnikov, Speyer and Williams proved in [26]
in the case of the Grassmannian that its double Bruhat decomposition is a CW
decomposition; Rietsch and Williams subsequently generalized this to all flag
varieties in [29]. In each case, it remains open whether these CW complexes
are regular and whether the spaces themselves are homeomorphic to balls.

Remark 1.6 Williams’ conjecture is related to Conjecture 1.1 in that the strat-
ified spaces we prove to be regular CW complexes arise as links of cells in the
double Bruhat stratification of the flag variety. However, Williams’ conjecture
does not imply Conjecture 1.1 since links of cells in regular CW complexes
are not always themselves regular. Consider e.g. the double suspension of a
Poincare homology 3-sphere with a big cell glued in (personal communica-
tion, Anders Björner).
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In the case of an arbitrary flag variety, the preimage polytope that has
been constructed in [29] is quite abstract, guaranteed to exist by properties
of canonical bases. In the special case of the Grassmannian, much more ex-
plicit combinatorics is known about Postnikov’s polytope of plabic graphs
as well as the map from this polytope to the totally nonnegative part of the
Grassmannian (see [25]).

2 Background and Terminology

Now we collect together basic terminology and facts from topology, combi-
natorics, the theory of Coxeter groups, and total positivity theory that will
be essential to this paper. See e.g. [4, 5, 7, 15, 16, 20, 24, 31, 32], or [33] for
further details.

2.1 Background in topology

Definition 2.1 A CW complex is a space X and a collection of disjoint open
cells eα whose union is X such that:

(1) X is Hausdorff.
(2) For each open m-cell eα of the collection, there exists a continuous map

fα : Bm → X that maps the interior of Bm homeomorphically onto eα

and carries the boundary of Bm into a finite union of open cells, each of
dimension less than m.

(3) A set A is closed in X if A ∩ eα is closed in eα for each α.

An open m-cell is any topological space which is homeomorphic to the
interior of an m-ball Bm, with an open 0-cell being a point. The restriction of
a characteristic map fα to the boundary of Bm is an attaching map. Denote
the closure of a cell α by α. A finite CW complex is a CW complex with
finitely many open cells.

Definition 2.2 A CW complex is regular with respect to {fα} if additionally
each fα restricts to a homeomorphism from the boundary of Bm onto a finite
union of lower dimensional open cells.

The following (which appears as Theorem 38.2 in [24]) will enable us to
build CW complexes by induction on dimension.

Theorem 2.3 Let Y be a CW complex of dimension at most p − 1, let
∑

Bα

be a topological sum of closed p-balls, and let g : ∑
Bd(Bα) → Y be a

continuous map. Then the adjunction space X formed from Y and
∑

Bα by
means of g is a CW complex, and Y is its (p − 1)-skeleton.
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Definition 2.4 Let g : X → Y be a continuous, surjective function. Then the
quotient topology on Y is the topology whose open sets are the sets whose in-
verse images are open in X. Say that g is an identification map if the topology
on Y is the quotient topology induced by g.

The requirement needed for a continuous, surjective g : X → Y to be an
identification map is automatic if X, Y are compact and Hausdorff, which
will always hold for our upcoming collapsing maps.

Remark 2.5 Given an identification map g : X → Y and a function f :
X → Z such that g(x) = g(y) implies f (x) = f (y), then Proposition 13.5
of [Br] implies that f is continuous iff the induced function f : Y → Z satis-
fying f = f ◦ g is continuous.

Remark 2.5 will allow us to use continuity of f(i1,...,id ) to deduce continuity
of the induced map f(i1,...,id ) on the quotient space after a series of collapses,
each of which is given by an identification map.

Definition 2.6 A topological n-manifold is a Hausdorff space M having a
countable basis of open sets, with the property that every point of M has a
neighborhood homeomorphic to an open subset of Hn, where H

n is the half-
space of points (x1, . . . , xn) in R

n with xn ≥ 0. The boundary of M , denoted
∂M , is the set of points x ∈ M for which there exists a homeomorphism of
some neighborhood of x to an open set in H

n taking x into {(x1, . . . , xn)|xn =
0} = ∂Hn.

Next we review the notion of a collaring, since this will be critical to our
general construction of cell collapses in Theorem 4.21.

Definition 2.7 Given a topological manifold M with boundary, a collar or
collaring for M is a closed neighborhood N of ∂M contained in M that is
homeomorphic to ∂M × [0,1] with ∂M mapping to ∂M × {0}.

A proof of the following appears in [8] and in Appendix II of [34].

Theorem 2.8 If M is a compact, topological manifold with boundary ∂M ,
then M has a collar.

We will extend collapsing maps from low-dimensional cell boundaries in
which they are most naturally defined to higher dimensional cells by proving
existence of requisite collars and showing that our collapsing maps can be
approximated by homeomorphisms, in fact constructing a continuous path of
homeomorphisms from our collapsing map (which itself is not a homeomor-
phism) to the identity map.
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Finally, we briefly recall from [14] the notion of link for Whitney stratified
spaces, and we refer the reader to [14] for further details. Let Z be a Whitney
stratified subset of a smooth manifold M , let N ′ be a smooth submanifold
which contains a given point p of Z and which is transverse to each stratum
of Z containing p. Let Bδ(p) be the closed ball of radius δ centered at p.
Then the link, denoted L(p), of a stratum S at the point p is the set L(p) =
N ′ ∩ Z ∩ ∂Dδ(p).

2.2 Background in topological combinatorics

Definition 2.9 The closure poset of a finite CW complex is the partially or-
dered set (or poset) of open cells with σ ≤ τ iff σ ⊆ τ . By convention, we
adjoin a unique minimal element 0̂ which is covered by all the 0-cells, which
may be regarded as representing the empty set.

Let ∂τ denote τ \ τ , i.e. the boundary of τ .

Definition 2.10 The order complex of a finite partially set is the simplicial
complex whose i-dimensional faces are the chains u0 < · · · < ui of i + 1
comparable poset elements.

A poset is graded if for each u ≤ v, all saturated chains u = u0 ≺ u1 ≺
· · · ≺ uk = v involve the same number k of covering relations ui ≺ ui+1 (i.e.
ui < ui+1 such that ui ≤ v ≤ ui+1 implies v = ui or v = ui+1). In this case,
we say that the poset interval [u, v] has rank k. Recall that a finite, graded
poset with unique minimal and maximal elements is Eulerian if each interval
[u, v] has equal numbers of elements at even and odd ranks. This is equiva-
lent to its Möbius function satisfying μ(u, v) = (−1)rk(v)−rk(u) for each pair
u < v, or in other words the order complex of each open interval (u, v) hav-
ing the same Euler characteristic as that of a sphere Srk(v)−rk(u)−2. A finite,
graded poset is thin if each rank two closed interval [u, v] has exactly four
elements, in other words if each such interval is Eulerian.

Remark 2.11 The order complex of the closure poset of a finite regular CW
complex K (with 0̂ removed) is the first barycentric subdivision of K , hence
is homeomorphic to K . In particular, this implies that the order complex for
any open interval (0̂, v) in the closure poset of K will be homeomorphic to a
sphere Srk(v)−2.

In [4], Björner characterized which finite, graded posets are closure posets
of regular CW complexes, calling such posets CW posets:

Theorem 2.12 (Björner) A finite, graded poset with unique minimal element
0̂ is the closure poset of a regular CW complex if and only if (1) it has at least



70 P. Hersh

one additional interval, and (2) each open interval (0̂, u) has order complex
homeomorphic to a sphere Srk(u)−2.

Results of Danaraj and Klee in [9] give a convenient way to verify (2) for
a finite, graded poset P , namely by proving P is thin and shellable.

Remark 2.13 Two finite CW complexes may have the same closure poset in
spite of having very different topological structure, so proving that the closure
poset of a stratified space is a CW poset gives evidences that the stratified
space is a regular CW complex, but is not enough to determine topological
structure of the stratified space itself.

Definition 2.14 A convex polytope is the convex hull of a finite collection of
points in R

n, or equivalently it is an intersection of closed half spaces that is
bounded.

For simplicial complexes and polytopes, the closure poset is often called
the face poset. Let [σ, τ ] denote the subposet consisting of elements z such
that σ ≤ z ≤ τ , called the closed interval from σ to τ . Likewise, the open
interval from σ to τ , denoted (σ, τ ), is the subposet of elements z with σ <

z < τ . A cell σ covers a cell ρ, denoted ρ ≺ σ , if ρ < σ and each z with
ρ ≤ z ≤ σ must satisfy z = ρ or z = σ .

For a regular cell complex in which the link of any cell is also regular,
�(u,v) is homeomorphic to the link of u within the boundary of v, hence is
homeomorphic to Sdim(v)−dim(u)−2.

Remark 2.15 If each closed interval [u, v] of a finite poset P is Eulerian
and shellable, then each open interval has order complex homeomorphic to a
sphere Srk(v)−rk(u)−2, implying condition 3 of Theorem 1.3.

The stratified spaces we consider in our main application have closure
posets that are the intervals of Bruhat order, which were proven to be thin
and shellable by Björner and Wachs in [6].

2.3 Background on Coxeter groups and their associated 0-Hecke algebras

Let si denote the adjacent transposition (i, i + 1) swapping the letters i and
i + 1 in type A, and more generally denote a member of a minimal set of
generators called the simple reflections of a Coxeter W group by {si |i ∈ I }.
Its relations are all of the form (sisj )

m(i,j) = e with m(i, i) = 2 for all i and
m(i, j) ≥ 2 otherwise. Finite Weyl groups are all Coxeter groups.

An expression for a Coxeter group element w is a way of writing it as
a product of simple reflections si1 · · · sir . An expression is reduced when
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it minimizes r among all expressions for w, in which case r is called the
length of w. An expression si1 · · · sid may be represented more compactly by
its word, namely by (i1, . . . , id). Breaking now from standard terminology,
we also speak of the wordlength of a (not necessarily reduced) expression
si1 · · · sir , by which we again mean r . Given simple reflections si, sj , define
m(i, j) to be the least positive integer such that (sisj )

m(i,j) = 1.
The following basic lemma will be key to our proof that the complexes Yw

satisfy Condition 4 in our CW complex regularity criterion:

Lemma 2.16 Given a reduced word si1si2 · · · sir for a Coxeter group element
w, any two distinct subwords of length r − 1 which are both themselves re-
duced must give rise to distinct Coxeter group elements.

We include a short proof of this vital fact for completeness sake.

Proof Suppose deleting sij yields the same Coxeter group element which we
get by deleting sik for some pair 1 ≤ j < k ≤ r . This implies sij sij+1 · · · sik−1 =
sij+1 · · · sik−1sik . Multiplying on the right by sik yields

sij sij+1 · · · sik−1sik = sij+1 · · · sik−1(sik )
2 = sij+1 · · · sik−1,

contradicting the fact that the original expression was reduced. �

The expression s1s2s1 in the symmetric group demonstrates that the state-
ment of the above lemma no longer holds if we replace r − 1 by r − i for
i > 1. Thus, it really seems to be quite essential to our proof of the Fomin-
Shapiro Conjecture that Theorem 1.3 enables us to focus on codimension one
cell incidences.

Lemma 2.17 (Exchange Condition, [16]) Let w = s1 · · · sr (not necessarily
reduced) where each si is a simple reflection. If l(ws) < l(w) for some simple
reflection s = sα , then there exists index i for which ws = s1 · · · ŝi · · · sr . In
particular, w has a reduced expression ending in s if and only if l(ws) < l(w).

Given a (not necessarily reduced) expression si1 · · · sid for a Coxeter
group element w, define a braid-move to be the replacement of sisj si · · ·
by sj sisj · · · yielding a new expression for w by virtue of a braid relation
(sisj )

m(i,j) = 1 with i �= j . Define a nil-move to be the replacement of a sub-
string sisi appearing in consecutive positions by 1. We call braid moves with
m(i, j) = 2 commutation moves and those with m(i, j) > 2 long braid moves.

Theorem 2.18 ([5], Theorem 3.3.1) Let (W,S) be a Coxeter system consist-
ing of Coxeter group W and minimal generating set of simple reflections S.
Consider w ∈ W .
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(1) Any expression si1si2 · · · sid for w can be transformed into a reduced ex-
pression for w by a sequence of nil-moves and braid-moves.

(2) Every two reduced expressions for w can be connected via a sequence of
braid-moves.

The Bruhat order is the partial order on the elements of a Coxeter group W

having u ≤ v iff there are reduced expressions r(u), r(v) for u, v with r(u)

a subexpression of r(v). Bruhat order is also the closure order on the cells
Bw = B−wB− of the Bruhat stratification of the reductive algebraic group
having W as its Weyl group.

Associated to any Coxeter system (W,S) is a 0-Hecke algebra, with
generators {xi |i ∈ S} and the following relations: for each braid relation
sisj · · · = sj si · · · in W , there is an analogous relation xixj · · · = xjxi · · · ,
again of degree m(i, j); there are also relations x2

i = −xi for each i ∈ S. In
our set-up, we will need relations x2

i = xi , but this sign change is inconse-
quential in our setting, so refer to the algebra with relations x2

i = xi as the
(unsigned) 0-Hecke algebra of W . This variation on the usual 0-Hecke al-
gebra has previously arisen in work on Schubert polynomials (see e.g. [12]
or [23]). We refer to x2

i → xi as a modified nil-move. It still makes sense
to speak of reduced and non-reduced expressions, and many properties (in-
cluding Lemma 2.16 and Theorem 2.18) carry over to the 0-Hecke algebra by
virtue of having the same braid moves; there are important differences though
too, largely resulting from the lack of inverses and a cancellation law.

2.4 Background in total positivity theory

Recall that a real matrix is totally nonnegative (resp. totally positive) if each
minor is nonnegative (resp. positive). The totally nonnegative part of SLn(R)

consists of the matrices in SLn(R) whose minors are all nonnegative. Moti-
vated by connections to canonical bases, Lusztig generalized this dramatically
in [20] as follows. The totally nonnegative part of a reductive algebraic group
G defined and split over R is the semigroup generated by the sets {xi(t)|t ∈
R>0, i ∈ I }, {yi(t)|t ∈ R>0, i ∈ I }, and {t ∈ T |χ(t) > 0 for all χ ∈ X∗(T )},
for I indexing the simple roots. In type A, we have xi(t) = In + tEi,i+1,
namely the identity matrix modified to have the value t in position (i, i + 1),
and likewise, yi(t) = In + tEi+1,i . More generally, xi(t) = exp(tei) and
yi(t) = exp(tfi) for {ei, fi |i ∈ I } the Chevallay generators. In other words,
if we let φi be the homomorphism of SL2 into G associated to the i-th simple
root, then

xi(t) = φi

(
1 t

0 1

)

and yi(t) = φi

(
1 0
t 1

)

.
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Let B+,B− be opposite Borel subgroups with N+ (or simply N ) and N−
denoting their unipotent radicals. In type A, we may choose B+,B− to con-
sist of the upper and lower triangular matrices in GL(n), respectively. In this
case, N+,N− are the matrices in B+,B− with diagonal entries all equalling
one. The totally nonnegative part of N+, denoted Y , is the submonoid gener-
ated by {xi(ti)|i ∈ I, ti ∈ R>0}. Let W be the Weyl group of G. One obtains a
combinatorial decomposition of Y by taking the usual Bruhat decomposition
of G and intersecting each open Bruhat cell Bw = B−wB− for w ∈ W with
Y to obtain an open cell Yo

w := Y ∩ Bw in Y . We follow [20] in using the
standard topology on R throughout this paper.

Theorem 2.19 (Lusztig) For (i1, . . . , id) any reduced word for w that the
map f(i1,...,id ) sending (t1, . . . , td) to xi1(t1) · · ·xid (td) is a homeomorphism
from R

d
>0 to Yo

w (see Proposition 2.7 in [20]).

The closure of Yo
w , denoted Yw , is the image of this same map applied

to R
d
≥0. Since xi(0) is the identity matrix, the cells in the closure of Yo

w are

obtained by choosing subwords of (i1, . . . , id), so Yw = ⋃
u≤w Yo

u for u ≤ w

in Bruhat order on W . Fomin and Shapiro suggested for each u < w in Bruhat
order that the link of the open cell Yo

u within Yw should serve as a good
geometric model for the Bruhat interval (u,w], namely as a naturally arising
regular CW complex with (u,w] as its closure poset. They define lk(u,w) as
we describe next.

Fomin and Shapiro introduced the following projection map πu : Y≥u →
Yo

u . Letting N(u) = u−1Bu ∩ N and Nu = B−uB− ∩ N , Fomin and Shapiro
proved that each x ∈ Y≥u has a unique expression as x = xux

u with xu ∈ Nu

and xu ∈ N(u). In light of results in [FS], πu(x) may be defined as equalling
xu ∈ Nu. They defined lk(u,w) as (π−1

u (xu)) ∩ Y[u,w] ∩ Sε(xu) for xu an
arbitrary point in Yo

u and Sε(xu) a sufficiently small sphere about xu (cf. p. 11
in [11]). Thus, points of lk(u,w) belong to cells Yu′ for u < u′ ≤ w, and
closure relations are inherited from Yw . They proved that each of the proposed
open cells in lk(u,w) is indeed homeomorphic to R

n for some n.
Recall from [13, 20], the relations (1) xi(t1)xj (t2) = xj (t2)xi(t1) for

any si, sj which commute, and (2) xi(t1)xj (t2)xi(t3) = xj (
t2t3

t1+t3
)xi(t1 +

t3)xj (
t1t2

t1+t3
) for any si, sj with (sisj )

3 = e and any t1 + t3 �= 0. These are
not difficult to verify directly. In [20], it is proven that there are more general
relations of a similar nature for each braid relation (sisj )

m(i,j) = e in W , i.e.,
relations xi(t1)xj (t2) · · · = xj (t

′
1)xi(t

′
2) . . . of degree m(i, j) for t ′1, . . . , t ′m(i,j)

rational functions of t1, . . . , ts each mapping R
d
>0 to R>0.

Lemma 2.20 The new parameters after applying a braid relation will have
the same sum as the old ones; moreover, this preservation of sum refines to
the subset of parameters for any fixed xi .
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Proof This follows from the description of xi(t) as exp(tei), simply by com-
paring the linear terms in the expressions xi(t1)xj (t2) · · · = xj (t

′
1)xi(t

′
2) . . .

appearing in a braid relation. �

Thus, our description of Rd
≥0 ∩ Sd−1

1 may be used even after a change of
coordinates (as in Lemma 6.24) resulting from a braid relation.

3 A new regularity criterion for CW complexes

Before proving Theorem 1.3, the new regularity criterion, we first give a few
examples demonstrating the need for its various hypotheses. It seems likely
that this new criterion will mainly apply to images of regular CW complexes.

Example 3.1 The CW complex consisting of a 2-cell with its entire boundary
attached to a 0-cell violates condition 2 of Theorem 1.3. Condition 2 is de-
signed also to preclude examples such as a CW complex whose 1-skeleton is
the simplicial complex comprised of the faces {v1, v2, v3, e1,2, e1,3, e2,3}, also
having a two cell with a nontrivial closed interval of its boundary mapped to
v2 and the remainder of its boundary mapped homeomorphically to the rest
of the 1-skeleton.

Remark 3.2 In the latter example above, one may choose a different charac-
teristic map which is a homeomorphism. Whether this can always be done for
finite CW complexes graded by cell dimension and satisfying conditions 1,
3, 4, and 5 seems subtle at best, in light of examples such as the Alexander
horned sphere: a ball which cannot be contracted to a point without changing
the topology of its complement, since that is not simply connected.

The next two examples give non-regular CW complex satisfying condi-
tions 1, 2, 4, and 5 of Theorem 1.3, but violating condition 3. The first exam-
ple violates thinness, while the second one violates the requirement that open
intervals of rank at least 3 be connected.

Example 3.3 Let K be a 2-dimensional CW complex whose 1-skeleton is the
simplicial complex with maximal faces {e1,2, e2,3, e1,3, e3,4, e4,5, e3,5} and
which has a unique 2-cell σ . The boundary of σ is mapped by fσ to the 1-
cycle (e3,1, e1,2, e2,3, e3,4, e4,5, e5,3). The attaching map fσ sends to different
points of the boundary of σ to v3.

Example 3.4 For a non-regular CW complex satisfying conditions 1, 2, 4,
and 5 of Theorem 1.3 as well as thinness of the closure poset, but violating
the connectedness requirement for open intervals of rank at least 3, take a
3-dimensional cube and glue together a pair of antipodal vertices.
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One might ask if condition 3 could be replaced by the requirement that the
closure poset be Eulerian, i.e. whether this could replace the connectedness
part of the requirement. Closure posets do have the feature that open inter-
vals (0̂, u) with rk(u) > 2 are connected, by virtue of the fact that the image
of a continuous map from a sphere Sd with d > 0 is connected. However,
there are Eulerian closure posets of CW complexes having disconnected inter-
vals (u, v) with rk(v)− rk(u) > 2 (personal communication, Hugh Thomas).
Still, it seems plausible that condition 3 in Theorem 1.3 might be replaceable
by the Eulerian property for the closure poset, i.e. that this together with con-
ditions 1, 2, 4, and 5 could imply regularity.

Next is a non-regular CW decomposition of RP2 satisfying conditions 1,
2, 3, and 5 of Theorem 1.3, but failing condition 4.

Example 3.5 Let K be the CW complex having as its 1-skeleton the simpli-
cial complex with maximal faces e1,2, e2,3, e1,3. Additionally, K has a single
2-cell whose boundary is mapped to the 1-cycle which goes twice around the
1-cycle (v1, v2, v3). Notice that this CW decomposition of RP2 has the same
closure poset as a 2-simplex, but the attaching map for the 2-cell is a 2 to 1
map onto the lower dimensional cells.

Finally, we give an example (due to David Speyer) of a CW complex with
characteristic maps meeting conditions 1, 2, 3 and 4, but failing condition 5,
though this CW complex is regular with respect to a different choice of char-
acteristic maps. David Speyer also helped with the formulation of condition 5.

Example 3.6 Let the 2-skeleton be the boundary of a pyramid. Now attach
a 3-cell which is a triangular prism by sending an entire edge of one of the
rectangular faces to the unique vertex of degree 4 in the pyramid, otherwise
mapping the boundary of the prism homeomorphically to the boundary of the
pyramid.

Proposition 3.7 Conditions 1 and 2 of Theorem 1.3 imply that the closure
poset is graded by cell dimension.

Proof Consider any eρ ⊆ eσ with dim(eσ ) − dim(eρ) > 1. Choose a point
p in eρ expressible as fσ (x) for some x ∈ Sdim(eσ )−1. If we take an infinite
series of smaller and smaller open sets about x, by Condition 2 each must
include a point sent by fσ to an open cell of higher dimension than eρ ; finite-
ness of the CW complex then implies some such open cell eτ is mapped into
infinitely often, implying p ∈ eτ . Thus, eρ < eσ for dim(eσ ) − dim(eρ) > 1
implies there exists eτ with eρ < eτ < eσ . �
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This motivates us to say that a finite CW complex is dimension-graded
whenever it meets conditions 1 and 2 of Theorem 1.3. Now to the proof of
Theorem 1.3.

Proof Conditions 1, 2, and 4 are each necessary tautologically. The necessity
of 3 follows easily from the fact that a regular CW complex is homeomorphic
to the order complex of its closure poset. To see that 5 is also necessary, note
that if K is regular with respect to the characteristic maps {fα}, then eσ ⊆ eτ

implies that fσ factors as fτ ◦ f −1
τ |σ ◦ fσ where f −1

τ |σ ◦ fσ is the desired
embedding.

Now to the sufficiency of these five conditions. We must prove that each
attaching map fσ is a homeomorphism from ∂(Bdimσ ) to the set of open
cells comprising eσ \ eσ . Since K is a CW complex in which the closure of
each cell is a union of cells, fσ must be continuous and surjective onto a
union of lower dimensional cells, leaving us to prove injectivity of fσ and
continuity of f −1

σ . However, once we prove injectivity, we may use the fact
that any bijective, continuous map from a compact set to a Hausdorff space
is a homeomorphism to conclude continuity of the inverse, so it suffices to
prove injectivity.

If the attaching maps for K were not all injective, then we could choose
open cells eρ, eσ with dim(eσ ) − dim(eρ) as small as possible such that
eρ ∈ eσ and fσ restricted to the preimage of eρ is not 1-1. Then we could
choose a point z ∈ eρ with |f −1

σ (z)| = k for some k > 1. By condition 4,
dim(eσ ) − dim(eρ) must be at least 2. We will now show that the open
interval (eρ, eσ ) in the closure poset has at least k connected components,
which by condition 3 forces [eρ, eσ ] to have rank exactly two. The point is
to show for each point pi ∈ f −1

σ (z) that there is an open cell eτi
⊆ eσ such

that pi ∈ ι(Bdim eτi ), and then to show for distinct points pi,pj ∈ f −1
σ (z)

that the open cells eτi
, eτj

are incomparable in the closure poset. To prove
the first part, take an infinite sequence of smaller and smaller balls about pi ,
which by condition 2 must each intersect f −1

σ (eτ ) for some eτ < eσ with
dim eσ − dim eτ = 1; by finiteness of K , the preimage of some such eτi

is hit

infinitely often, implying pi ∈ f −1
σ (eτi

), hence eρ ⊆ eτi
. We prove next that

the collections of cells whose closures contain the various points in f −1
σ (z)

must belong to distinct components of (eρ, eσ ), yielding the desired k com-

ponents in the open poset interval. Consider p1 �= p2 with pi ∈ f −1
σ (eτi

) for
i = 1,2. If eτi

< eτj
in the closure poset for {i, j} = {1,2}, then condition 5

would imply f −1
σ (eτi

) ⊆ f −1
σ (eτj

), and hence p1,p2 ∈ f −1
σ (eτj

), contradict-
ing the fact that fτj

restricted to the preimage of ρ is a homeomorphism.
Thus, (eρ, eσ ) has no comparabilities between cells whose preimages under
fσ have closures containing distinct points of f −1(z); in particular, (eρ, eσ )

has at least k connected components, hence must be rank two.
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Finally, we show that (eρ, eτ ) has at least 2k elements, forcing k to be 1, by
the thinness requirement in condition 3. This will contradict our assumption
that k was strictly larger than 1. Lemma 3.8 provides the desired 2k elements
by showing that for each of the k preimages of z, there are at least two open

cells eτ in (eρ, eσ ) with f −1
σ (eτ ) containing that particular preimage of z. �

Lemma 3.8 If a CW complex K meets the conditions of Theorem 1.3, then
it also satisfies the following condition: for each open cell eτ and each x ∈
eτ \ eτ with fτ (x) in an open cell eρ ⊆ eτ with dim eτ − dim eρ = 2, there

exist distinct open cells eσ1, eσ2 with dim eσi
= 1 + dim eρ and x ∈ f −1

τ (eσi
)

for i = 1,2.

Proof Condition 2 ensures that the boundary of Bdim eτ does not include any
open (dim eτ − 1)-ball, all of whose points map are mapped by fτ into eρ . In
particular, each such ball containing x includes points not sent by fτ to eρ .
Since K is finite, there must be some particular cell eσ1 such that points
arbitrarily close to x within the boundary of Bdim τ map into eσ1 , imply-
ing x ∈ eσ1 , with dim eρ < dim eσ1 < dim eτ . Thus, eρ ⊆ eσ1 and dim eσ1 =
dim eρ + 1, just as needed.

Now let us find a suitable eσ2 . Here we use the fact that removing the
boundary of eσ1 from a sufficiently small ball Bdim eτ −1 about x yields a
disconnected region, only one of whose components may include points
from eσ1 . This forces the existence of the requisite open cell eσ2 which in-
cludes points of the other component and has x in its closure. �

We will actually use Theorem 1.3 within the following framework:

Corollary 3.9 Let K be a finite, regular CW complex of dimension p and let
f be a continuous function from K to a Hausdorff space L. Suppose that f

is a homeomorphism on the interior of each open cell and on the closure of
each cell of the (p − 1)-skeleton of K . Then f (K) is a finite CW complex
satisfying conditions 1, 2, and 5 of Theorem 1.3, with the restrictions of f to
various closed cells in K serving as the characteristic maps.

Proof The restrictions of f to a collection of closures of cells of the (p − 1)-
skeleton give the characteristic maps needed to prove that the (p − 1)-
skeleton of f (K) is a finite CW complex. Now we use Theorem 2.3 to attach
the p-cells and deduce that f (K) is a finite CW complex with characteristic
maps given by the various restrictions of f .

Conditions 1 and 2 are immediate from our assumptions on f . If there are
two open cells σ1, σ2 in K (of dimension at most p − 1) with identical image
under f , then the fact that σ 1 and σ 2 are both regular with isomorphic clo-
sure posets gives a homeomorphism from σ1 to σ2 preserving cell structure,
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namely the map sending each x to the unique y with f (y) = f (x). This al-
lows us to use the embedding of either σ 1 or σ 2 in the closure of any higher
cell of K to deduce Condition 5. We use that L is Hausdorff and that we have
finitely many cells to deduce requirements (1) and (3) of CW complexes. �

Although the requirements of Corollary 3.9 may seem quite demanding,
Corollary 3.9 is well-suited to proving for a family of regular CW complexes
that their images under f are also regular CW complexes by an induction on
dimension. We will use Corollary 3.9 in our main application in the proof of
Theorem 6.34, a key inductive result.

4 Topological collapsing lemmas

In this section, we introduce certain types of collapses that may be performed
sequentially on a convex polytope, and we prove that these preserve homeo-
morphism type as well as the property of being a finite regular CW complex,
though they do not preserve polytopality. In Theorem 4.21, we explicitly de-
fine the maps accomplishing these collapses. Then we give a relaxation of the
requirements of Theorem 4.21 so as to enable the transfer of a parametriza-
tion function on curves in a closed cell σ meeting the requirements of Theo-
rem 4.21 to a closed cell with the same cell structure in a different, homeo-
morphic regular CW complex which does not necessarily have the same cell
structure outside of σ .

In preparation for these results, we first introduce some helpful proper-
ties a topological space or a map may have, with the commonality that in
practice these properties may be verified using primarily combinatorics. In
what follows, we will typically have a topological space X endowed with the
structure of a finite, regular CW complex K . We denote this by XK and call
XK a regular CW space. Denote by K/(kerg) the quotient space obtained
from an identification map g on a topological space K by setting x ∼ y iff
g(x) = g(y).

We begin by establishing the following convenient general notion of col-
lapse which is much in the spirit of the concept of elementary collapse, but
in fact will preserve homeomorphism type rather than just homotopy type.
This section will then be devoted to developing a specific set of checkable
conditions which will yield such a collapse.

Definition 4.1 Given a finite regular CW complex K on a set X and an open
cell L in K , define a face collapse or cell collapse of L onto τ for τ an open
cell contained in ∂L to be an identification map g : X → X such that:

(1) Each open cell of L is mapped surjectively onto an open cell of τ with L

mapped onto τ .
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(2) g restricts to a homeomorphism from K \L to K \ τ and acts homeomor-
phically on τ .

(3) The images under g of the cells of K form a regular CW complex with
new characteristic maps obtained by composing the original characteris-
tic maps of K with g−1 : XK → XK for those cells of K contained either
in τ or in (K \ L).

We call such a map g a collapsing map. Remark 4.2 will show that these
collapses preserve homeomorphism type.

The collapse of a cell L often will also collapse other cells in its closure in
the process.

Remark 4.2 The induced map g : XK/(kerg) → X is continuous by Re-
mark 2.5, and it is bijective by how it is defined. Since K is Hausdorff and
K/(kerg) is compact, we may conclude that g is a homeomorphism. Thus,
face collapses preserve homeomorphism type.

Remark 4.3 If g is a collapsing map on XK , and h is a homeomorphism from
the underlying space X to itself, then g ◦h, composing functions right to left,
is a collapsing map as well.

For example, Remark 4.3 may enable a change of coordinates for conve-
nience prior to a collapse. The following may also be helpful for controlling
how such a homeomorphism such as a change of coordinates map may inter-
act with subsequent cell collapses.

Lemma 4.4 Suppose K1 and K2 are topological spaces, f is a homeomor-
phism from K1 to K2, π1 : K1 → K1 and π2 : K2 → K2 are identification
maps giving rise to quotient spaces K1/ ∼ and K2/ ∼′. If we also have x ∼ y

in K1 iff f (x) ∼′ f (y) in K2, then K1/ ∼ is homeomorphic to K2/ ∼′ under
the induced map f .

Proof This follows easily from Proposition 13.5 in Chap. 1 of [7] by con-
structing a suitable commutative diagram. �

Definition 4.5 Given a collection of parallel line segments C covering a face
F of a polytope P , define a length function len : F → R by letting len(x)

be the length of the element of C containing x. Now define a parametrization
p : F → [0,1] by letting the restriction of p to any c ∈ C be the linear function
from c to [0,1].
Remark 4.6 Convexity of P implies len is continuous, which in turn implies
that p is also continuous on int(F ) and everywhere on F except at points
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comprising parallel line segments consisting of just single points, though here
nearby parallel line segments also approach length 0. Moreover, if h is any
homeomorphism from int(F ) to another topological space, then p ◦ h−1 is
also continuous.

Continuity of len will allow us to perform collapses across families of
parallel-like curves, as defined next, according to a continuous function that
stretches a collar to cover a face being collapsed. This stretching function is
provided in Theorem 4.21.

Definition 4.7 Let K0 be a convex polytope, and let C0
i be a family of parallel

line segments covering a closed face L0
i in ∂K0 with the elements of C0

i given
by linear functions c : [0,1] → L0

i . Suppose that there is a pair of closed faces
G1,G2 in ∂L0

i with c(0) ∈ G1 and c(1) ∈ G2 for each c ∈ C0
i and there is a

composition gi ◦ · · · ◦ g1 of face collapses (cf. Definition 4.1) on K0 such
that:

(1) gi ◦ · · · ◦ g1 acts homeomorphically on int(L0
i ).

(2) For each c ∈ C0
i , gi ◦ · · · ◦g1 either sends c to a single point or acts home-

omorphically on c.
(3) Suppose gi ◦ · · · ◦g1(c(t)) = gi ◦ · · · ◦g1(c

′(t ′)) for c �= c′ ∈ C0
i and some

(t, t ′) �= (1,1). Then t = t ′, and for each t ∈ [0,1] we have gi ◦ · · · ◦
g1(c(t)) = gi ◦ · · · ◦ g1(c

′(t)).

Then call Ci = {gi ◦ · · · ◦ g1(c)|c ∈ C0
i } a family of parallel-like curves on

the closed cell Li = gi ◦ · · · ◦ g1(L
0
i ) of the finite regular CW complex Ki =

gi ◦ · · · ◦ g1(K0).

Remark 4.8 These conditions are designed so that they only need to be
checked just prior to the k-th collapsing step for the curves covering a cell
to be collapsed in the k-th collapse.

Notice that Definition 4.7, part (3), implies the curves are nonoverlapping
except perhaps at their endpoints in gi ◦ · · · ◦ g1(G2). Verifying (3) mainly
requires showing curves have distinct endpoints in gi ◦ · · · ◦ g1(G1), leading
to the following:

Condition 4.9 Let us call Definition 4.7, part (3), the distinct initial points
condition (DIP).

Remark 4.10 In practice, we will verify Definition 4.7, part (2), by verifying
Condition 4.11 below; this suffices because gi ◦ · · · ◦ g1 acts homeomorphi-
cally on each open cell not collapsed by any gj for j ≤ i.
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We say that a curve is nontrivial if it includes more than one point.

Condition 4.11 A collection C of curves covering the closure of a cell F

satisfies the distinct endpoints condition (DE) if for any nontrivial curve c ∈ C,
the two endpoints of c live in distinct cells in F .

The fact that each collapse restricts to a homeomorphism on the interior
of each cell it does not collapse allows us to reduce what actually must be
checked to show that a family of curves is parallel-like to the following:

Remark 4.12 To verify the requirements of Definition 4.7 for the family of
curves Ci covering a cell Li to be collapsed in the i-th collapsing step, it
suffices to show:

(1) Each earlier collapse restricts to a homeomorphism on each open cell
which is not collapsed prior to the i-th collapsing step

(2) (DIP) for Ci holds just prior to the i-th collapse
(3) (DE) for Ci holds just prior to the i-th collapse
(4) Consistency of parametrizations when entire curves in Ci that are in ∂Li

are identified with each other in earlier collapses.

In our main application, and quite possibly in other future applications
as well, the last condition will follow immediately from our set-up; more
specifically, it will follow from how each collapse replace a pair of parameters
t ′rk−1 and t ′rk by a single parameter equalling their sum. Next we give the
ingredients that will allow us to extend our collapsing maps through collars,
culminating in Condition 4.17 and Lemma 4.18.

Definition 4.13 Given a continuous, surjective function gi+1 : X → X, de-
fine an interpolating family of maps {gi+1,t |t ∈ [0,1]} from X to X as a col-
lection of maps with gi+1,0 = gi+1 and gi+1,1 = id, requiring (1) for each
t ∈ (0,1] that gi+1,t be a homeomorphism from X to X and (2) continuity of
the map hi+1 : X × [0,1] → X defined by hi+1(x, t) = gi+1,t (x).

Remark 4.14 This notion of interpolating family of maps is almost exactly
the topological notion of isotopy, except that our initial map gi+1,0 is not a
homeomorphism. In our setting, gi+1,0 is a collapsing map which will admit
approximations by homeomorphisms.

Lemma 4.15 Suppose a collapsing map g collapses across a family of
parallel-like curves C where each c ∈ C is sent to itself by a monotonically
increasing, piecewise linear function g : [0,1] → [0,1]. Then g gives rise to
an interpolating family of maps.
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Proof By definition, we must have 0 = a1 < · · · < ak = 1 and 0 = b1 ≤ · · · ≤
bk = 1 such that g maps [ai, ai+1] to [bi, bi+1] by a linear map for each
1 ≤ i ≤ k − 1. Then define gt instead to map [ai, ai+1] linearly to [tai + (1 −
t)bi, tai+1 + (1 − t)bi+1]. �

Lemma 4.16 If a collapsing map gi+1 on a regular CW space XK homeo-
morphic to a sphere gives rise to an interpolating family of maps {gi+1,t |t ∈
[0,1]} on XK , then gi+1 extends to a collapsing map on any ball B having
XK as its boundary, implying gi+1(B) is a regular CW complex homeomor-
phic to a ball.

Proof Choose a collar X × [0,1] for B , which exists by Theorem 2.8. For
each (x, t) ∈ X×[0,1], let gi+1(x, t) = gi+1,t (x). Let gi+1 act as the identity
map on B \ (X × [0,1]). �

Condition 4.17 A finite regular CW complex K has the inductive manifold
condition (IM) if for each open d-cell τ and each (d + 1)-cell σ such that
τ ⊆ ∂σ , ∂σ \ τ is a compact manifold with boundary.

Next we show how to use collars to extend a collapsing map from the
boundary of a low-dimensional closed cell to an entire cell complex.

Lemma 4.18 Let K be a regular CW complex having a unique maximal cell
and satisfying Condition 4.17 (IM). Let τ be an i-cell in the boundary of an
(i +1)-cell σ . Let gi+1 be a collapsing map on ∂σ that collapses the cell τ . If
gi+1 gives rise to an interpolating family of maps, then gi+1 may be extended
to a collapsing map on K .

Proof First choose a series of cells τ = σ1, σ = σ2, σ3, . . . , σk such that σj ⊆
σj+1 with dimσj+1 = dimσj +1 for each j , letting σk be the unique maximal
cell of K . We are given gi+1 defined on ∂σ and will now describe for each
2 ≤ j ≤ k − 1 how to extend gi+1 from ∂σj to σj and then to ∂σj+1.

Lemma 4.16 enables us to extend gi+1 from ∂σj to σj . If σj is the big cell,
we are done. Otherwise, choose σj+1 with σj ⊆ ∂σj+1 and take a collar for
∂σj+1 \ σj within ∂σj+1, which exists by Condition 4.17 and Theorem 2.8.
Use an interpolating family to extend gi+1 from σj to ∂σj+1, defining the
interpolating family as follows.

Assuming gi+1 has been defined on the first r − 1 collars in the above al-
ternation, let gi+1(x, t1, t2, . . . , tr ) = (gi+1,1−(1−t1)···(1−tr )(x), t2, . . . , tr ) for
each (t1, . . . , tr ) ∈ [0,1]r , and let gi+1 act as the identity on all points of σr

(resp. ∂σr+1 \ σr ) not in our collar for σr (resp. ∂σr+1 \ σr ) as well as for
points that are in our collar but sit over points that were not in the collar at an
earlier stage. �
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Now to a condition that will be used to prove that our upcoming collapses
preserve regularity:

Condition 4.19 Let g be an identification map on a regular CW space XK

such that g maps cells onto cells, maps an open cell F onto one of its bound-
ary cells, and acts homeomorphically on XK \ F . Then g satisfies the least
upper bound condition (LUB) if for any pair of open cells A,B ⊆ F such that
g(A) = g(B) and any face F ′ that is a least upper bound for A and B in the
closure poset just prior to the application of g, F ′ is also mapped onto one of
its boundary cells by g.

Remark 4.20 At each collapsing step, there will be one cell among those
getting collapsed that has all other cells getting collapsed in the same step in
its closure. (LUB) then implies for any pair of cells F,F ′ which are both least
upper bounds for cells σ and σ ′ just prior to the collapse of F such that this
collapse identifies σ with σ ′, then this step also collapses a larger cell having
both F and F ′ in its closure, doing so in a way that induces the collapses of
F and F ′.

Next is the main result of this section, a topological construction show-
ing how under certain (mainly combinatorial) conditions a regular CW ball
admits a cell collapse (in the sense of Definition 4.1), hence admits an iden-
tification map preserving homeomorphism type and regularity. The result is
phrased as an inductive statement so as to allow the performance of a se-
ries of such collapses by showing that after each collapse the conditions are
preserved that are needed to apply the theorem again. The proof is largely
devoted to defining explicitly a suitable continuous, surjective map based on
a collection of parallel-like curves covering the cell to be collapsed. Figures 1
and 2 provide pictures that may be helpful to seeing what these maps are
doing.

Theorem 4.21 Let K0 be a convex polytope. Let g1, . . . , gi be collapsing
maps with gj : XKj−1 → XKj

for regular CW complexes K0, . . . ,Ki all hav-
ing underlying space X. Suppose Ki satisfies Condition 4.17 (IM) and that
there is an open cell L0

i in ∂K0 upon which gi ◦ · · · ◦ g1 acts homeomor-
phically and a collection C = {gi ◦ · · · ◦ g1(c)|c ∈ C0

i } of parallel-like curves
covering Li for Li = gi ◦ · · · ◦ g1(L

0
i ) ∈ Ki . Then there is an identification

map gi+1 : XKi
→ XKi+1 specified by C. If gi+1 also satisfies Condition 4.19

(LUB), then gi+1 is a collapsing map and Ki+1 is a regular CW complex also
satisfying Condition 4.17 (IM).

Proof We may assume Li is top dimensional in ∂Ki , because otherwise we
may choose a cell L′ in Ki with dimL′ = dimLi +1 and Li ⊆ ∂L′, define the
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Fig. 1 Schematic for
collapsing map

collapsing map on ∂L′ as described below, then use Lemma 4.18 to extend
gi+1 to the entire complex. We will define gi+1 on ∂L′ in such a way that
Lemma 4.16 will enable its extension to L

′
.

We will construct a continuous, surjective function gi+1 that maps entire
curves in C to points in G2 (cf. Definition 4.7), thereby collapsing Li onto
G2, and in the process identifying each point of G1 with a point of G2; gi+1
restricted to Ki \ Li will be a homeomorphism. First we define an auxiliary
family C′ of curves that covers not only Li but also a collar just outside its
boundary. We will stretch these curve extensions from the collar to cover Li ;
the introduction of additional curves within the collar will enable interpola-
tion from the action of gi+1 on Li to the identity map outside this collar. Now
to the details.

First consider any c ∈ C with c ∩ ∂(Li) = {x, y} for points x ∈ G1 and
y ∈ G2. Extend c to include all points (y, t) and (x, t) for t ∈ [0,1] to ob-
tain a lengthened curve c′. Since c1 �= c2 for c1, c2 ∈ C implies that c1 and c2
have distinct endpoints in G1 by Definition 4.7, part 3, the curve extensions
{(x, t)|t ∈ [0,1]} given by the various points x ∈ G1 are nonoverlapping. It
will not matter if distinct c1, c2 ∈ C have the same endpoint y ∈ G2, because
gi+1|G2×[0,1] = ID. In this situation, let y × [0,1] be part of both c′

1 and c′
2.

Definition 4.7, part 2, guarantees x �= y for each nontrivial c ∈ C. For each
c ∈ C where c is a single point in ∂(Li), extend to c′ = {(c, t)|t ∈ [0,1]},
and let gi+1|c′ = ID. For each nontrivial curve c with c ⊆ ∂(Li), we cre-
ate a family Fc of curves in Ni (see Fig. 2) so that Fc covers exactly
{c} × [0,1] = {(x, t)|x ∈ c; t ∈ [0,1]}. We make one such curve ct ∈ Fc

for each t ∈ [0,1], doing this in such a way that we have c ⊆ c0. Letting
c = {c(t)|t ∈ [0,1]} with c(0) ∈ G1 and c(1) ∈ G2, then for each t ∈ [0,1],
we define ct as {(c(t/2), t ′)|t ′ ≥ t} ∪ {(c(t ′′), t)|t ′′ ≥ t/2} ⊆ {c}× [0,1]. Now
C′ is comprised of the union of these families of curves Fc for each nontrivial
curve c ⊆ ∂Li , along with an extended curve c′ resulting from each c ∈ C
which is trivial or only intersects ∂(Li) in its endpoints.

Now we define gi+1 : Ki → Ki by specifying how it maps each c′ ∈ C′
surjectively onto itself. First consider any c′ ∈ C′ obtained by extending
some nontrivial c ∈ C. Represent the points of c′ as {c(t)|t ∈ [−1,2]}, where
[−1,0] gives p1 = c′ ∩ (G1 ×[0,1]), i.e. the part of the collar sitting over the
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Fig. 2 Defining gi+1 on
collar portion over curve
c ⊆ ∂Li

endpoint of c in G1, whereas [0,1] specifies the points in p2 = c′ ∩ Li , and
[1,2] gives the points in p3 = c′ ∩ (G2 × [0,1]). Let gi+1(c(t)) = c(1) ∈ G2
for t ∈ [0,1], i.e. let gi+1 map the entire segment p2 in Fig. 1 to its endpoint
in G2; let gi+1(c(t)) = c(2t + 1) for t ∈ [−1,0], i.e. stretch the segment p1
in Fig. 1 to cover p1 ∪ p2; and let gi+1(c(t)) = c(t) for t ∈ [1,2].

Next consider any family Fc of elements of C′ covering c ×[0,1] for some
c ∈ C with c ⊆ ∂(Li). The map here is designed so as to interpolate from the
collapsing map needed in ∂Li to the identity map outside the collar. Points are
represented as ordered pairs (c(t1), t2) for t1, t2 ∈ [0,1]. For each t ∈ [0,1],
the map gi+1 sends s2 ∪ s3 = {(c(t ′), t)|t/2 ≤ t ′ ≤ 1} to s3 = {(c(t ′), t)|1 −
t/2 ≤ t ′ ≤ 1} by appropriate scaling of the parameter, and gi+1 stretches s1 =
{(c(t/2), t ′)|t ′ ≥ t/2} to cover s1 ∪ s2 for s2 = {(c(t ′), t)|t/2 ≤ t ′ ≤ 1 − t/2},
again by reparametrization by a suitable linear scaling factor. See Fig. 2. In
other words, gi+1 sends {(c(t/2), t ′)|1+t

2 ≤ t ′ ≤ 1} to {(c(t/2), t ′)|t ≤ t ′ ≤ 1}
and sends {(c(t/2), t ′)|t ≤ t ′ ≤ 1+t

2 } to {(c(t ′), t)|t/2 ≤ t ′ ≤ 1 − t/2}.
Note that gi+1 acts as the identity on ∂(Ni) and acts injectively on Ni \Li .

We describe next how to choose the parametrizations of various curves in C′
in a way that makes gi+1 continuous. We use that the relative interiors of the
curves in C have preimages that are a family of parallel line segments covering
a convex region (a face of a polytope), enabling us to choose parametrizations
within this simplex which induce suitable ones for C; the point is to use Re-
mark 4.5 to give a continuous function from Li

0 to [0,1] recording for each
point how it is parametrized within a curve in C. From this, we obtain suitable
parametrizations for C′ by virtue of the collar that is also covered by C′ being
homeomorphic to ∂(Li) × [0,1].

Surjectivity and continuity of gi+1 imply it induces a continuous, bijective
function gi+1 from Ki/(kergi+1) to Ki+1. Continuity of (gi+1)

−1 is then
immediate, because any bijective, continuous function from a compact set
to a Hausdorff space has continuous inverse. Thus, gi+1(XKi

) = XKi+1 is
homeomorphic to XKi

/(kergi+1) via gi+1. It is straightforward to see that
the equivalence relation under kergi+1 gives a closed subset of Xk × Xk ,
implying XKi

/(kergi+1) is Hausdorff.
Now let us check that regularity is also preserved under gi+1. Condi-

tion 4.19 (LUB) implies for any cell G not collapsed by gi+1 ◦ · · · ◦ g1 that



86 P. Hersh

any cells σ1, σ2 ⊆ ∂(G) identified by gi+1 must have some least upper bound
A ⊆ ∂(G) which is also collapsed by gi+1. Thus, our homeomorphism gi+1
will restrict to G/(kergi+1), enabling us to define the attaching map for G as a
composition of three maps, first applying the attaching map for G within Ki ,
then composing this with g−1

i+1|Gf inal
, regarded as a map from XKi

to XKi
,

then composing with gi+1 : XKi
→ XKi+1 , the point of the second map being

to send points the cells of Ki to the cells of Ki+1; here we let Gf inal denote
the set of cells mapped homeomorphically to themselves by gi+1 or in other
words the cells that the various fibers of gi+1 are mapped onto. Lemmas 4.15
and 4.16 show that this may be extended to yield a characteristic map for all
of G, making it a regular CW complex homeomorphic to a ball.

Lemma 4.22 will verify Condition 4.17 (IM) for Ki+1. �

Lemma 4.22 Collapses as in Theorem 4.21 preserve Condition 4.17, i.e. the
inductive manifold condition.

Proof Consider any pair of cells τ ⊆ σ in Ki+1 with dimσ = dim τ + 1.
We must show that ∂σ \ τ is a compact manifold with boundary. By our
definition of collapsing map, there must be cells τi, σi in Ki with gi+1
mapping τi homeomorphically to τ and σi homeomorphically to σ with
τi ⊆ σi . The proof of Theorem 4.21 shows that gi+1 is a homeomorphism
from σi/(kergi+1) to σ . In particular, this implies that gi+1 gives a bijection
from (∂σi \ τi)/(kergi+1) to ∂σ \ τ . By definition, gi+1 is continuous and
ker(gi+1) = {(x, x′)|gi+1(x) = gi+1(x

′)} ⊆ Ki × Ki is closed, implying that
gi+1((∂σi \ τi)/(kergi+1)) is compact and Hausdorff by Proposition 13.8 in
Chap. 1 of [7]. Since gi+1 is a continuous, bijective map from a compact set
to a Hausdorff space, gi+1 also has continuous inverse. Hence, the property
of being a compact manifold with boundary transfers as desired. �

Our collapsing map as defined in the proof of Theorem 4.21 is defined
in terms of curve parametrizations and their extensions across collars. Poly-
topality of K0 is only used to supply such a parametrization function that is
continuous. Thus, Theorem 4.21, Lemma 4.22, and Proposition 4.26 all hold
in more generality than how they are stated, without requiring any modifica-
tions to their proofs, yielding:

Corollary 4.23 In Theorem 4.21, we may replace the polytope K0 by any
regular CW complex satisfying the inductive manifold condition and replace
the parallel line segments covering a face L0

i by any family C0 of curves
covering a closed cell L0

i such that (1) all of the curves have one end-
point living in a closed cell G1 ⊆ ∂(L0

i ) and the other endpoint in a closed
cell G2 ⊆ ∂(L0

i ), (2) these curves in C0 are nonoverlapping except possi-
bly at their endpoints in G1, and (3) there is a continuous function p from
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L0
i \ {x ∈ L0

i | x comprises a trivial curve in C0} to [0,1] that restricts to a
homeomorphism from each nontrivial curve c ∈ C0 to [0,1].

An especially useful special case is the following, which in our main appli-
cation will allow us to incorporate a change of coordinates homeomorphism
ch which changes the reduced word with respect to which we work and hence
may change the cell structure outside of the closed cell being collapsed:

Corollary 4.24 Let K be a regular CW complex with closed cell L covered
by a family of curves C and let φ be a homeomorphism from K to a regular
CW complex K ′ with closed cell L′ covered by a family C′ of parallel-like
curves such that φ restricted to L is a cell-structure preserving homeomor-
phism to L′ mapping each curve in C to a curve in C′. Then we may transfer
the parametrization function for L′ to one for L, enabling the collapse of L

across the curves in C via exactly the collapsing map given in the proof of
Theorem 4.21. Specifically, it does not matter if K has an entirely different
cell structure from K ′ outside of the closed cell L.

Next we turn to the links of the cells. Following [11], we use (essentially)
the notion of link in the sense of Whitney stratified spaces (as defined in [14])
for a series of quotient cell complexes obtained by repeated application of
Theorem 4.21 and its extension in Corollary 4.24. In the following proposi-
tion, we use a polyhedral cone C whose cross-sectional slices are copies of
our polytope, as well as using the quotient spaces of C under our collapses,
denoted C/∼k . We assume that for each τ ⊆ σ we have a projection map πσ

τ

onto the region Rτ of C/∼k indexed by the cell τ . We require that the inverse
image under πσ

τ of each point p ∈ Rτ lives in a transversal to the open cell
τ where τ is obtained by restricting Rτ to the cross-sectional slice of C/∼
containing p; moreover, we require that this transversal also gives transver-
sals through sufficiently nearby cross-sectional slices farther from the origin
as well. The map πσ

τ is defined to have as its domain the intersection of the
following two sets S1 and S2: (1) S1 is the part of C/∼k consisting of the
cross-sectional slice containing p as well as all slices farther from the origin,
while (2) S2 is the set of regions of C/∼k indexed by the cells in σ having τ

in their closure.

Definition 4.25 Take a point p in the interior of τ (in any chosen slice
of C/∼k besides the origin). Define the link of τ in σ , denoted lk(τ, σ ), as the
intersection of the set (πσ

τ )−1(p) with a sufficiently nearby cross-sectional
slice of C/∼k contained in S1 and not containing p.

Proposition 4.26 Suppose a cell collapse of Li which meets the conditions
of Theorem 4.21 or Corollary 4.24 also satisfies dim(G1) = dim(G2) =
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dim(Li) − 1. Suppose additionally that there are projection maps πσ
τ giv-

ing rise to links as defined above both after the current collapsing step and at
all earlier steps. Also suppose that the preimage under the current collapse of
each transversal is the closure of a disjoint union of such transversals given
by the corresponding projection maps on the preimage restricted to int(Li)

and that this closure is contained in the disjoint union of the transversals for
the projection maps on Li . Then the collapse will preserve the property that
the link of each cell is a closed ball with induced cell decomposition a regular
CW decomposition.

Proof Let Fi+1 be the maximal cell collapsed at this step, and let gi+1 be the
collapsing map. The result is immediate for cells whose links (prior to the col-
lapse) do not intersect F i+1, since gi+1 acts homeomorphically everywhere
except on F i+1, leaving such links unchanged.

Letting G2 be the closed cell onto which gi+1 maps F i+1, we now check
the result for the link of the open cell G2. Let G1 be the closed cell con-
taining the other endpoints of the parallel-like curves across which F i+1 is
collapsed. The point is to show that g−1

i+1(lk(p)) for p ∈ G2 is a ball and
that homeomorphism type is preserved under application of gi+1. Our use
of parallel-like curves allows us to decompose g−1

i+1(lk(p)) into three pieces,
namely its restrictions to (a) points sitting over G1, (b) points sitting over G2
and (c) points sitting over F i+1 \ (G1 ∪ G2). The fact that earlier collapses
were performed successfully yielding links that were regular CW balls im-
plies that (a) and (c) are each regular CW balls and that (b) is the product of
a regular CW ball with the open interval (0,1). The parallel-like curves glue
these together in a natural way that makes the union also a regular CW ball,
since (b) is (0,1)× lkσ/∼i

Fi+1 where the desired link is being taken in σ and
∼i is the equivalence relation resulting from the first i collapses, while (a) and
(c) are each homeomorphic to lkσ/∼i

Fi+1. Moreover, applying gi+1 glues the
ball sitting over G2 to the ball sitting over G1 by identifying the endpoints
of curves sitting over F i+1 \ (G1 ∪ G2), yielding a ball. This would be more
subtle without our assumption that dim(G1) = dim(G2).

The same approach applies to the link of any open cell contained in G2
which likewise is not collapsed by gi+1 but also has some cell of dimension
one higher than it collapsed onto it by gi+1. Finally, consider the link of any
cell σ that is not collapsed by gi+1, but is in the closure of a cell that is
collapsed by gi+1; the only remaining such case is for a face σ that is cov-
ered by parallel-like curves that are each just a single point. In this case, the
result follows from the fact that our homeomorphism from X/(kergi+1) to
X naturally restricts to some neighborhood of any point in σ by choosing a
neighborhood whose boundary is a union of points which are fixed by gi+1 to-
gether with entire curves from our family of parallel-like curves across which
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Fi+1 is collapsed. The regular cell structure is obtained by restriction of cells
of X/(kergi+1) to the resulting ball. �

5 Combinatorial 0-Hecke algebra lemmas

The relations xixi = xi will yield a 0-Hecke algebra variant on the deletion
exchange property for Coxeter groups, namely our upcoming notion of “dele-
tion pair”. In preparation, we first discuss a poset map from a Boolean algebra
to Bruhat order.

It is natural (and will be helpful) to associate a Coxeter group ele-
ment w(xi1 · · ·xid ) to any 0-Hecke algebra expression xi1 · · ·xid . This is
done by applying braid moves and modified nil-moves to xi1 · · ·xid to ob-
tain a new expression xj1 · · ·xjs such that sj1 · · · sjs is reduced, then letting
w(xi1 · · ·xid ) = sj1 · · · sjs . The fact that this does not depend on the choice of
braid moves and modified nil-moves will follow from the geometric descrip-
tion for w(xi1 · · ·xid ) given next in Proposition 5.1.

Proposition 5.1 Lusztig’s map f(i1,...,id ) sends RS = {(t1, . . . , td) ⊆ R
d
≥0|ti >

0 iff i ∈ S} with S = {j1, . . . , jk} to the open cell Yo
u for u = w(xij1

· · ·xijk
).

Proof This follows from Theorem 2.18, which ensures the existence of a
series of braid moves and modified nil-moves which may be applied to
xij1

· · ·xijk
mapping the points of RS onto the points of some cell RT in-

dexed by a reduced expression, sending each x ∈ RS to some y ∈ RT with the
property that f(i1,...,id )(x) = f(i1,...,id )(y). �

Corollary 5.2 The Coxeter group element w(xij1
· · ·xijk

) does not depend on
the series of braid moves and modified nil-moves used to convert xij1

· · ·xijk
into a reduced expression.

Corollary 5.3 If A = xj1 · · ·xjr and B = xk1 · · ·xks with {j1, . . . , jr} ⊆
{k1, . . . , ks}, then w(A) ≤Bruhat w(B). Thus, w is a poset map from a
Boolean algebra to Bruhat order.

Proof A is obtained from B by setting some parameters to 0, hence the open
cell to which A maps is in the closure of the open cell to which B maps. But
Bruhat order is the closure order on cells of Yw . �

See [1] for additional properties of this poset map w from a Boolean alge-
bra to Bruhat order.

The following 0-Hecke algebra notion, that of deletion pair, will play a
key role in various lemmas in Sect. 6.2, i.e. in checking the combinatorial
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conditions needed in our proof of the Fomin-Shapiro Conjecture in order to
use the cell collapses developed in Sect. 4.

Definition 5.4 Define a deletion pair in a 0-Hecke algebra expression
xi1 · · ·xid to be a pair {xir , xis } such that the subexpression xir · · ·xis is not
reduced but x̂ir · · ·xis and xir · · · x̂is are each reduced.

For example, in type A the expression x1x2x1x2 has deletion pair {xi1, xi4}.
Lemma 5.5 If {xir , xis } comprise a deletion pair, then w(xir · · ·xis ) =
w(x̂ir · · ·xis ) = w(xir · · · x̂is ).

Proof w(xir · · · x̂is ) ≤ w(xir · · ·xis ) and w(x̂ir · · ·xis ) ≤ w(xir · · ·xis ) in
Bruhat order, while all three of these Coxeter group elements have the same
length, so the equalities follow. �

See [10] for a faithful representation of the 0-Hecke algebra in which the
simple reflections which do not increase length act by doing nothing.

Remark 5.6 If {xiu, xiv } comprise a deletion pair in a word xi1 · · ·xid and
we apply a braid relation in which xiu is the farthest letter from xiv in the
segment being braided, then the resulting expression will have as a deletion
pair xiv together with the nearest letter to it in the segment that was braided.
We regard this as a braided version of the same deletion pair.

Example 5.7 Applying a braid relation to x1x2x1x2 yields x2x1x2x2; we re-
gard the third and fourth letter in the new expression as a braided version
of the deletion pair comprised of the first and fourth letters in the original
expression.

Given a reduced expression xi1 · · ·xid , associate a Coxeter group element
R(xij ) to each xij by letting R(xij ) = si1 · · · sij−1sij sij−1 · · · si1 . For finite Cox-
eter groups, these will be the reflections. In the case of a nonreduced expres-
sion, if w(xi1 · · ·xij ) = w(xi1 · · ·xij−1), then we find the largest j ′ < j such
that sij ′ · · · sij−1 = sij ′+1

· · · sij and let R(xij ) = R(xij ′ ).
Our original proof of the next lemma relied on the fact that all finite Cox-

eter groups are also reflection groups. Sergey Fomin provided us with the
proof presented below which avoids passing to reflection groups. In particu-
lar, this allows us to avoid assuming here, and thereby throughout the paper,
that our Coxeter groups are of finite type.

Lemma 5.8 Given a reduced expression xi1 · · ·xim in the 0-Hecke algebra of
a Coxeter group in which R(xim) = si0 , then xi0xi1 · · ·xim has {xi0, xim} as a
deletion pair.
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Proof Let us show that xi0xi1 · · ·xim−1 is reduced whereas xi0xi1 · · ·xim is not.
By Exercise 8 in [5, Chap. 1], it suffices to prove R(xij ) �= R(xik ) for all
0 ≤ j < k ≤ m − 1 along with proving R(xi0) = R(xim). But xi1 · · ·xim−1

is reduced, which implies si1 · · · sij−1sij sij−1 · · · si1 �= si1 · · · sik−1sik sik−1 · · · si1
for 1 ≤ j < k ≤ m − 1. This in turn implies R(xij ) �= R(xik ) for 1 ≤ j < k ≤
m − 1 with respect to the expression xi0xi1 · · ·xim , since we simply conjugate
the previous inequalities by si0 to obtain the desired inequalities. On the other
hand, R(xi0) = si0 = s3

i0
= si0(si1 · · · sim · · · si1)si0 , completing the proof. �

6 Proof of the Fomin-Shapiro Conjecture

In this section, we apply Theorem 1.3 to the stratified spaces Yw introduced
by Fomin and Shapiro in [11] to prove the following.

Theorem 6.1 The Bruhat decomposition Yw of the link of the identity in the
totally nonnegative real part of the unipotent radical of a Borel subgroup in a
semisimple, simply connected group defined and split over R is a regular CW
complex homeomorphic to a ball. Moreover the link of each cell is as well.

Much of the proof will consist of first constructing a regular CW com-
plex K that will be a quotient space (Rd

≥0 ∩ Sd−1
1 )/ ∼ of a simplex; this

is obtained from the simplex by a series of collapses in Sect. 6.2. Then we
prove that the quotient space map induced from f(i1,...,id ) will act on K in a
manner that meets all the requirements of Corollary 3.9. As preparation, we
first define a much simpler equivalence relation in Sect. 6.1, denoted ∼C , do-
ing identifications based only on stuttering pairs which may be obtained in
nonreduced expressions exclusively by applying commutation moves. Then
we give the more difficult analogous argument for ∼. Finally, Sect. 6.3 ap-
plies Theorem 1.3 to show that the induced map f(i1,...,id ) from K to Yw is a
homeomorphism.

Let us now establish some convenient notation for the proof. Let Rd
≥0 ∩

Sd−1
1 denote the restriction of Rd

≥0 to the hyperplane with coordinates sum-
ming to 1. We will make extensive use of the fact that this is a convex poly-
tope. Define the regions or faces in R

d
≥0∩Sd−1

1 as the sets RS = {(t1, . . . , td) ∈
R

d
≥0 ∩ Sd−1

1 |ti > 0 iff i ∈ S}. We associate the 0-Hecke algebra expression
xij1

· · ·xijk
to the region R{j1,...,jk}, calling this the x-expression of R{j1,...,jk},

denoted x(R{j1,...,jk}). For subexpressions x(A) and x(B) of xi1 · · ·xid , let
x(A) ∨ x(B) be the expression made of the union of the indexing positions
from x(A) and x(B), and let A ∨ B denote the cell given by that expression.
To keep track of the positions of the nonzero parameters, we sometimes also
include 1’s as placeholders, e.g. describing the region R{1,3} given by the map
f(1,2,1) by the expression x1 ·1 ·x1. We say that an x-expression is stuttering if
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it directly admits a modified nil-move xixi → xi , i.e. xi(u)xi(v) = xi(u + v)

(cf. Sect. 2.3). An expression is commutation equivalent to a stuttering ex-
pression if it admits a series of commutation moves yielding a stuttering ex-
pression.

In Sect. 6.2, we will define the equivalence relation ∼ on R
d
≥0 ∩ Sd−1

1
by repeated application of the following idea: if the x-expression xij1

· · ·xijk

associated to a point (t1, . . . , td) ∈ R
d
≥0 is not reduced, then we may ap-

ply commutation moves and long braid moves to it, causing a coordinate
change to new coordinates (u1, . . . , ud) in which we may apply a substi-
tution xi(us−1)xi(us) = xi(us−1 + us). Each region R{j1,...,jk} indexed by
a non-reduced word is collapsed by such a move, at which point we say
(u1, . . . , ud) ∼ (u′

1, . . . , u
′
d) for those points (u′

1, . . . , u
′
d) ∈ R

d
≥0 ∩ Sd−1

1 such
that u′

s−1 + u′
s = us−1 + us and u′

i = ui for i �= s − 1, s. It is important to
our collapsing argument that for each non-reduced subword (ij1, . . . , ijk

) of
(i1, . . . , id), we choose exactly one such way of identifying points of the open
cell R{j1,...,jk} with points having strictly fewer nonzero parameters, namely
the identifications dictated by the collapse we choose to apply to R{j1,...,jk}.
Additional identifications will hold by transitivity of ∼.

Before turning to the details, let us briefly enumerate the main upcoming
definitions, lemmas and theorems and how they fit together. Definition 6.6
introduces the parallel-like curves that will be used to induce the collapses
leading to ∼C . Then we verify the distinct endpoints condition (DE) in
Lemma 6.9, the least upper bound condition (LUB) in Lemma 6.12, the
distinct initial points condition (DIP) in Lemma 6.10, and deduce from all
this the regularity of the quotient cell complex (Rd

≥0 ∩ Sd−1
1 )/∼C in Theo-

rem 6.13. Afterwards, we characterize exactly which faces are identified with
each other by ∼C in Lemma 6.14.

Now in the general case of ∼, we prove a similar series of lemmas, af-
ter first showing that long braid moves may be accomplished by change of
coordinates maps that are homeomorphisms on the closed cells to be col-
lapsed. The requisite parallel-like curves are specified in Definition 6.18. The
result about changes of coordinates is obtained through Lemmas 6.20, 6.22,
6.23, and 6.24. Next we verify the conditions (DIP) in Lemma 6.28, (DE)
in Lemma 6.29, (LUB) in Lemma 6.30, and we show the requisite equidi-
mensionality to deduce regularity of links in Lemma 6.27. In proving these
results for a particular collapse, we assume inductively that all earlier col-
lapses were already performed successfully, and we also assume inductively
that all results in the paper hold for all d ′ < d to prove the results for reduced
word (i1, . . . , id) of length d . We then combine these ingredients to deduce
homeomorphism type and regularity of (Rd

≥0 ∩ Sd−1
1 )/∼ in Theorem 6.32.

Finally, we prove that the induced map f (i1,...,id ) from this quotient space
to Yw is a homeomorphism that preserves cell structure, implying that Yw is
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a regular CW complex homeomorphic to a ball. To this end, Lemma 6.33
uses the exchange axiom for Coxeter groups in order to verify the attaching
map injectivity requirement of Theorem 1.3, allowing the proof of the Fomin-
Shapiro Conjecture to be completed in Theorem 6.34.

6.1 Collapsing a simplex to obtain (Rd
≥0 ∩ Sd−1

1 )/∼C

In this section, we collapse those faces of Rd
≥0 ∩ Sd−1

1 whose words are com-
mutation equivalent to stuttering words, denoting the resulting identifications
by ∼C . We prove that (Rd

≥0 ∩ Sd−1
1 )/∼C is a regular CW complex home-

omorphic to a ball by proving that regularity and homeomorphism type are
preserved under each in a series of collapses of the type introduced in Sect. 4.
A separate proof for ∼C is given before turning to the general case for two
reasons: (1) it illustrates the general strategy in a much simpler setting, and
(2) this result will be used in the proofs of Lemmas 6.20 and 6.24, two key
ingredients to the general case.

Definition 6.2 An omittable pair of an x-expression x(F ) is a pair {xil , xir }
of letters appearing in x(F ) with il = ir such that there exists a series of
commutation moves applicable to x(F ) placing the letters into neighboring
positions, thereby enabling a modified nil-move.

Example 6.3 The x-expression x1x3x4x3x1 in type A has omittable pair
{xi1, xi5}, sometimes denoted simply by the positions, i.e. as {1,5}.

Order as follows all possible triples (x(F ), {il, ir}), where F is a face in
R

d
≥0 ∩ Sd−1

1 and {xil , xir } is an omittable pair in x(F ) with l < r . Use linear
order on the index r , then break ties with linear order on r − l, breaking
further ties by reverse linear order on dimF , and breaking any remaining ties
arbitrarily.

Example 6.4 (x1x3x4x3x1, {1,5}) precedes (x1x3 · x3x1, {1,5}) in this order-
ing, while (x1x3 · x3x1, {2,4}) comes earlier than both of these.

We obtain from this our sequence of face collapses by repeatedly choosing
for the next collapse the earliest triple (x(F ), {xil , xir }) whose face F has not
yet been collapsed. Denote by (x(Fm), {xilm

, xirm
}) the triple chosen for the

m-th collapse, and let gm be the collapsing map accomplishing this, based on
the level curves from Definition 6.6. Our main task in this section will be to
prove that these are parallel-like curves and that gm meets the requirements
of Theorem 4.21.

Remark 6.5 It often will happen that the step collapsing a cell Fm will also
collapse some additional cells. However, each collapsing step will have one
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cell among those being collapsed at that step such that all others being col-
lapsed at that step are in its closure.

Definition 6.6 Given the triple (x(Fm), {xilm
, iirm }) specifying the m-th col-

lapse, call the collections of points
{
(t1, . . . , td)|tlm + trm = k and tj = kj for j /∈ {lm, rm}}

in Fm for the various sets of constants {k, k1, . . . , k̂lm, . . . k̂rm, . . . , kd} ∈ [0,1]
summing to 1 the level curves of Fm.

Notation 6.7 If cells G and G′ are identified during one of the first m − 1
collapsing steps, denote this by G ∼m G′.

Remark 6.8 The collapse given by (x(Fm), {xilm
, xirm

}) will also collapse
those cells in Fm given by subexpressions of x(Fm) having both tilm > 0
and tirm > 0. In this manner, the collapse will identify faces having tilm = 0
with ones instead having tirm = 0.

To keep track combinatorially of which faces are identified by the collapses
giving rise to ∼C , define a slide-move, or simply a slide, to be the replacement
of S = {j1, . . . , js} by S′ = {k1, . . . , ks} for j1 < · · · < js and k1 < · · · < ks

with ji = ki for i �= r for some fixed r and ijr = ikr . An example in type A
for (i1, . . . , id) = (1,2,3,1,2) is S = {1,5} and S′ = {4,5}. An exchange is
the replacement of one letter by another letter than can be accomplished by a
series of slide-moves and commutation moves.

Now we use combinatorics to verify that the hypotheses needed for topo-
logical collapses introduced in Sect. 4 are indeed met. Condition 1 of Defi-
nition 4.7 follows immediately from our set-up. The next two lemmas check
conditions 2 and 3, respectively, by checking the distinct endpoints condition
(DE) and distinct initial points condition (DIP).

Lemma 6.9 The collapses inducing ∼C satisfy Condition 4.11 (DE).

Proof What we must prove is that the two endpoints of any nontrivial level
curve across which a cell Fi is collapsed live in distinct cells just prior to
the collapse. Suppose G1 ⊆ Fi with tli > 0 and tri = 0 had been identified
already with the face G2 ⊆ Fi instead having tri > 0 and tli = 0. This would
have required a series of earlier slides, including one of the form ri → r for
some r < ri . Our collapsing order implies ri − r < ri − li . By our dimen-
sion maximizing assumption in our collapsing order, the last of these slide
moves shifting the right element of our deletion pair to the left would have
also collapsed Fi , by virtue of identifying it with a face already collapsed, a
contradiction. �
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Lemma 6.10 Suppose a cell H1 ⊆ G1 is collapsed prior to the collapse of
Fj , where H1 is identified with H2 ⊆ G2 in the collapsing step given by
(Fj , {xir , xis }) by an exchange of xir ∈ H1 ⊆ G1 for xis ∈ H2 ⊆ G2 with
r < s. Then the least upper bound H1 ∨ H2 will have also been collapsed
prior to the collapse of Fj , and in such a way that any two level curves in
H1 ∨ H2 having the same endpoint in H1 are identified prior to the collapse
(Fj , {xir , xis }) with coinciding parametrizations.

Proof The fact that H1 is collapsed before Fj means that x(H1)|xi1 ···xis
con-

tains an omittable pair. However, x(H1)|xi1 ···xis
= x(H1)|xi1 ···xis−1

, implying
x(H1)|xi1 ···xis−1

contains an omittable pair based upon which H1 is collapsed.
By our prioritization of higher dimensional faces in our collapsing order, the
face H1 ∨{xis } = H1 ∨H2 will have been collapsed in the same way, yielding
the desired result. �

Next we verify (LUB), after first giving an example showing the idea.

Example 6.11 The cell F with x(F ) = x1x1x1 is collapsed based on the dele-
tion pair comprised of its leftmost two x1’s, identifying x1 ·1 ·x1 with 1 ·x1 ·x1
and in the process also identifying x1 · 1 · 1 with 1 · x1 · 1. The region with
expression 1 · x1 · x1 is collapsed based on its pair of x1’s, identifying 1 · x1 · 1
with 1 · 1 ·x1. Composing face identifications based on these two steps causes
x1 · 1 · 1 to be identified with 1 · 1 · x1, potentially causing the attaching map
for the face given by x1 · 1 · x1 no longer to be injective; however, this face
will itself have been collapsed by this time, by virtue of having already been
identified with the face 1 · xi · xi which was already collapsed.

Lemma 6.12 The collapses inducing ∼C satisfy condition 4.19 (LUB).

Proof Suppose that G1 and G2 are identified during the collapse of F via
deletion pair {xilj

, xirj
}, for xilj

∈ x(G1), xirj
∈ x(G2), and F ′ is any face

that is a least upper bound for G1 and G2 in the closure poset just prior to
the collapse of F . We must show that F ′ is also collapsed by the end of the
step collapsing F or is identified with F prior to this collapse. By virtue of our
set-up, x(F ′) must have subexpressions x(G′

1) and x(G′
2) with G′

1 ∼j G1 and
G′

2 ∼j G2. Consider x(F ′) and its earliest subexpressions (in our collapsing
ordering on triples) which are x-expressions for some such G′

1 ∼j G1 and
G′

2 ∼j G2.
Suppose xirj

/∈ x(F ′). This implies that xirj
must have been exchanged

with a letter xir to its left during an earlier identification step. Then x(F ′)
will have an omittable pair {xil , xir } for some r < rj , causing F ′ to have been
collapsed strictly before the collapse of F .
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Now consider the case xirj
∈ x(F ′). F ′ will again be collapsed during or

prior to the collapse of F unless xirj
is the right letter in the leftmost dele-

tion pair of F ′ and xilj
has been exchanged for a letter xil ∈ x(F ′) to its left

appearing instead in F ′. But then by the fact that our collapsing order max-
imizes dimension among faces with the same omittable pair, this exchange
xilj

→ xil (or each such exchange in a series) would extend to a face includ-
ing xirj

, thereby identifying faces including xil and xirj
with ones instead

including xilj
and xirj

. In particular, this identifies F ′ with F prior to the
collapse of F . �

Combining the above results will yield:

Theorem 6.13 (Rd
≥0 ∩ Sd−1

1 )/∼C is a regular CW complex homeomorphic
to a ball.

Proof We will use Theorem 4.21 to prove that each collapse on R
d
≥0 ∩ Sd−1

1
may be accomplished in turn by a map that preserves homeomorphism type
and regularity, provided that all earlier collapses also met the requirements of
Theorem 4.21. This will imply that the series of collapses producing (Rd

≥0 ∩
Sd−1

1 )/ ∼C yields a regular CW complex homeomorphic to a ball.
The parallel-like curves that we will use for the (i + 1)-st collapsing

step will be of the form given in Definition 6.6; they are the images under
gi ◦ · · · ◦ g1 of parallel line segments covering a closed cell of Rd

≥0 ∩ Sd−1
1 .

To see that gi ◦ · · · ◦ g1 acts on each level curve either homeomorphically
or by sending it to a point, notice that by definition the interior of any non-
trivial level curve lives entirely in some open cell F ⊆ Fi , hence a cell upon
which all earlier collapses act homeomorphically. Lemmas 6.9, 6.10, and 6.12
confirm the distinct endpoints condition (DE), distinct initial points condition
(DIP), and least upper bound condition (LUB), respectively, i.e. the require-
ments of Theorem 6.13. �

Proposition 6.14 Suppose x(RS) and x(RT ) are not commutation equivalent
to stuttering expressions. Then RS ∼C RT iff S and T differ from each other
by a series of commutation moves and slide moves.

Proof Let S = {j1, . . . , js} and T = {k1, . . . ks}. We begin with pairs of words
x(RS), x(RT ) differing by a single slide, so S ∩ T = S \ {jr} = T \ {kr} for
some r with ijr = ikr . But then x(RS∪T ) is stuttering, implying RS∪T was
collapsed by ∼C . The fact that x(RS), x(RT ) are not commutation equiva-
lent to stuttering expressions implies RS∪T could have only been collapsed
by identifying RS with RT . By transitivity of ∼C , S and T differing by a
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series of slide moves likewise give rise to RS,RT with RS ∼C RT . Apply-
ing commutation moves to x(RS) as well to produce σ(x(Rσ(S))) which is
slide equivalent to x(RT ) ensures x(RS∪T ) also admits the same commuta-
tion moves leading to a stuttering word, and again x(RS∪T ) does not admit
any other stuttering pairs, so again RS ∼C RT . �

Example 6.15 (a) For (i1, . . . , id) = (1,2,1) in type A, R{1} is identified with
R{3} during the collapse of R{1,3}. (b) If (i1, . . . , id) = (1,3,1), then R{1,2} is
identified with R{2,3} during the collapse of R{1,2,3}.

6.2 Collapsing a simplex to obtain (Rd
≥0 ∩ Sd−1

1 )/∼
Now we turn to the identifications ∼ induced by a series of collapses which
collapse all faces whose words are nonreduced, i.e. starting afresh so as now
to incorporate those collapses requiring long braid moves.

Definition 6.16 Given a deletion pair {xir , xis } with r < s in x(F ), let
c({xir , xis };x(F )) be the smallest number of long braid moves needed in a
series of braid moves applied to xir · · ·xis−1 yielding an expression whose last
letter comprises a stutter with xis .

Lemma 5.5 combined with Theorem 2.18 guarantees existence and finite-
ness of c({xir , xis };x(F )).

Example 6.17 In type A, we have c({xi1, xi4};x1x2x1x2) = 1, because we
may apply the relation x1x2x1 → x2x1x2 to obtain x2x1x2x2.

Now let us order triples (x(F ), {xil , xir }) where {xil , xir } is a deletion
pair of x(F ) in preparation for our choice of a collapsing order on non-
reduced faces. By convention, say l < r . Letting the statistics listed earliest
take highest priority, with later statistics used to break ties, order the triples
(x(F ), {xil , xir }) by: (1) linear order on r , (2) linear order on r − l, (3) linear
order on c({xil , xir };x(F )), and (4) reverse linear order on dimF . We may
break any remaining ties arbitrarily.

We repeatedly choose the earliest triple (x(F ), {xil , xir }) among those
for faces F not yet collapsed. Denote the k-th such triple chosen by
(x(Fk), {xilk

, xirk
}). We will use Theorem 4.21 to accomplish the collapse

of Fk by a collapsing map gk applied to (Rd
≥0 ∩ Sd−1

1 )/ ∼k , letting ∼k be
the equivalence relation comprised of the identifications that result from the
first k − 1 collapsing steps, described shortly. First we will need some results
regarding change of coordinate maps.

Denote by ∼s the set of all possible identifications (t1, . . . , td) ∼ (t ′1,
. . . , t ′d) under ∼ where f(i1,...,is )(t1, . . . , ts) = f(i1,...,is )(t

′
1, . . . , t

′
s) and tj = t ′j
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for all j > s. That is, ∼s consists of all possible identifications based on the
leftmost s letters. By our inductive hypothesis based on length, we will be able
to assume ∼s is exactly the identifications accomplished by collapses based
on deletion pairs involving only the leftmost s letters. The way our collapsing
order was chosen implies then that for each s there will be some k such that
∼s=∼k , meaning that ∼s is the equivalence relation resulting from the first
k − 1 collapses. For this same pair k and s, let us also introduce the notation
gs for the composition of maps gs = gk−1 ◦ · · · ◦ g1. Let us also establish the
notation gs

(i1,...,id ) as the map gs given by the reduced word (i1, . . . , id). Let
∼(i1,...,id ) denote the equivalence relation given by reduced word (i1, . . . , id)

after all possible collapses, and let ∼s
(i1,...,id ) denote the equivalence relation

∼s consisting of identifications based on the leftmost s letters again with re-
spect to initial choice of reduced word (i1, . . . , id).

Definition 6.18 Given the triple (x(Fk), {xilk
, xirk

}), choose a sequence of
braid moves on (ilk , . . . , irk−1) using exactly c(x(F ), {xilk

, xirk
}) long braid

moves to transform (i1, . . . , id) into (j1, . . . , jd) with a stutter jrk−1 = jrk .
Obtain new coordinates (u1, . . . , ud) on Fk/ ∼k as the unique solution (up to
equivalence relation ∼k ) to

f(i1,...,id )(t1, . . . , td) = f(j1,...,jd )(u1, . . . , ud)

which has ui = ti for i /∈ {lk, . . . , rk − 1}, as justified by Lemmas 6.20
and 6.24. The level curves for this triple are the collections of points

{
(u1, . . . , ud)|urk−1 + urk = c and um = cm for all m /∈ {rk − 1, rk}

}

for the various choices of constants c, c1, . . . , ĉrk−1, ĉrk , . . . , cd ≥ 0.

We will eventually prove that these level-curves are parallel-like, in the
sense of Definition 4.7.

Example 6.19 Applying braid moves to x1x2x1x3x2x3 yields the expression
x2x1x3x2(x3x3). Collapsing based on the resulting stuttering pair will cause
the proper face 1 · x2x1x3x2x3 to be identified with the face x1x2x1x3x2 · 1.
The proper face x1x2 · 1 · 1 · 1 · x3 is neither collapsed nor identified with
another face in the process since the first and last letters do not form a deletion
pair. On th e other hand, the face x1x2 · 1 · x3x2x3 would have already been
collapsed at an earlier step, hence need not be considered in the next lemma
as part of the boundary of the cell indexed by x1x2x1x3x2x3.

Lemma 6.20 Consider the reduced expression sisj . . . of length m(i, j) com-
prised of alternating si’s and sj ’s. Then the resulting regular CW com-

plex � = (R
m(i,j)

≥0 ∩ S
m(i,j)−1
1 )/∼C given by (i, j, . . . ) is homeomorphic
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via the map f −1
(j,i,... ) ◦ f(i,j,... ) to the regular CW complex �′ = (R

m(i,j)

≥0 ∩
S

m(i,j)−1
1 )/∼C′ given by (j, i, . . . ).

Proof We may use the fact that f(i,j,... ) and f(j,i,... ) act homeomorphically
on the interior of the big cell for � and �′, respectively. Each point x ∈ �

not in the interior of the big cell must instead belong to a region R{ij1 ,...,ijk }
whose associated Coxeter group element w(xij1

· · ·xijk
) has a unique reduced

expression, namely one with the appropriate alternation of si ’s and sj ’s. Thus,
x must be sent to a point in �′ having this same reduced expression, so that
by Proposition 6.14 the only choices to be made are equivalent to each other
under ∼C′ . This map from � to �′ is therefore a composition of two home-
omorphisms, namely f(i,j,... ) and f −1

(j,i,... ), and hence is itself a homeomor-
phism. �

Example 6.21 The type A relation sisi+1si = si+1sisi+1 gives rise to the map
(t1, t2, t3) → (t ′1, t ′2, t ′3) for (t ′1, t ′2, t ′3) = (

t2t3
t1+t3

, t1 + t3,
t1t2

t1+t3
) on the interior of

{f(1,2,1)(t1, t2, t3)|t1, t2, t3 ≥ 0}. The above proposition shows that this map
extends to the boundary, i.e. extends to a map from (Rd

≥0 ∩ Sd−1
1 )/ ∼C to

(Rd
≥0 ∩Sd−1

1 )/ ∼C′ . For instance, it sends (t1, t2,0) to (0, t1, t2) for t1, t2 > 0,
and it sends (0, t2,0) to the ∼C′ -equivalence class {(t ′1,0, t ′3)|t ′1 + t ′3 = t2}.

Lemma 6.22 Given a reduced word (i1, . . . , id) and some d ′ < d such that
the series of collapses for (i1, . . . , id ′) successfully applies to R

d ′
≥0 ∩ Sd ′−1

1 ,
with each collapse preserving regularity and homeomorphism type, then the
extension to R

d
≥0 ∩ Sd−1

1 of this same series of collapses may be successfully

performed on R
d
≥0 ∩ Sd−1

1 .

Proof First apply each collapse to the subcomplex of Rd
≥0 ∩ Sd−1

1 in which

td ′+1 = · · · = td = 0, since this is exactly R
d ′
≥0 ∩ Sd ′−1

1 . Then extend continu-

ously to the family of subspaces with td ′+1 = · · · = td = k for 0 ≤ k ≤ 1
d−d ′+1 ,

using that each of these for k < 1
d−d ′+1 is also isomorphic to R

d ′
≥0 ∩Sd ′−1

1 and

that the slice given by k = 1
d−d ′+1 is a 1-point space. Geometrically, we are

adding a cone point and extending the collapse to the coned complex. Conti-
nuity follows from the fact that the level curves we collapse across each hold
the values td ′+1, . . . , td constant, hence the collapses apply to all (nontrivial)
cross-sectional slices in the same way. �

Lemma 6.23 Suppose that the k-th collapsing step uses deletion pair
{xilk

, xirk
} for lk < rk . Then ∼rk−1=∼m where m is the largest possible posi-

tive integer such that the triple (x(Fm), {xilm
, xirm

}) has rm < rk .
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Proof Consider the map f(i1,...,irk−1) on just the leftmost rk − 1 positions in
our reduced word. By induction on wordlength, specifically our assumption
of all results in the paper for all d ′ < d , we may use Theorem 6.34 to deduce
that f(i1,...,irk−1) is a homeomorphism from (R

rk−1
≥0 ∩ S

rk−2
1 )/ ∼ to Ysi1 ···sirk−1

.

By Lemma 6.22, this means in particular that the collapses based on dele-
tion pairs using only positions 1, . . . , rk − 1 are enough to accomplish all the
desired identifications in ∼rk−1. �

Lemma 6.24 For each s < d , there is a cell structure preserving homeomor-
phism ch from (Rd

≥0 ∩ Sd−1
1 )/ ∼s

(i1,...,id ) to (Rd
≥0 ∩ Sd−1

1 )/ ∼s
(j1,...,jd ) where

(j1, . . . , jd) is obtained from (i1, . . . , id) by braid moves involving only the
leftmost s letters in (i1, . . . , id).

Proof The case of short braid moves is obvious, since we just switch the
order of the parameters. Now by induction on d , we may assume the main
results of the paper for all s < d in our proof of all these results for our
given d , provided we check the base case of the induction. In particular, this
inductive usage of Theorem 6.34 for s < d together with Lemma 6.22 and
the present lemma for s < d gives that the two complexes under considera-
tion, namely (Rd

≥0 ∩Sd−1
1 )/ ∼s

(i1,...,id ) and (Rd
≥0 ∩Sd−1

1 )/ ∼s
(j1,...,jd ), both are

homeomorphic by cell preserving homeomorphisms to the join Yu ∗ �d−s−1
where (i1, . . . , is) and (j1, . . . , js) are both reduced words for Coxeter group
element u and �d−s−1 is a simplex having d − s vertices. Thus, by compos-
ing homeomorphisms they are also homeomorphic to each other. The base
case of this induction follows immediately from Lemma 6.20. �

Remark 6.25 For any braid relation (sisj )
m(i,j) = e in W and any positive

reals t2, . . . , tm(i,j) > 0, there is a unique (t ′1, . . . , t ′m(i,j)) ∈R
m(i,j)

≥0 satisfying

xi(0)xj (t2)xi(t3) · · · = xj

(
t ′1

)
xi

(
t ′2

)
xj

(
t ′3

) · · · ,

namely t ′1 = t2, t
′
2 = t3, . . . , t

′
m(i,j)−1 = tm(i,j), and t ′m(i,j) = 0.

Remark 6.26 The proof of Lemma 6.24 immediately implies for each face F

with associated word (i ′1, . . . , i′d ′) that is a subword of (i1, . . . , id) and for any
word (j ′

1, . . . , j
′
d ′) = ch(i ′1, . . . , i′d ′) obtained by braiding the leftmost s letters

in (i ′1, . . . , i′d ′) for s ≤ min(d − 1, d ′) using the same braid moves as above

that gs
(i′1,...,i′d′ )

(F k) is homeomorphic to (Rd ′
≥0 ∩ Sd ′−1

1 )/ ∼s
(j ′

1,...,j
′
d′ )

.

Next we check a condition that will be helpful for verifying our various
requirements for performing collapses, i.e. for checking the hypotheses of
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Corollary 4.24, assuming that all earlier collapses were performed success-
fully. Note that in the Lemma 6.27 we do not require F to be the maximal
face that is collapsed in this step.

Lemma 6.27 If a cell F is collapsed across level curves each having one
endpoint in H1 and the other endpoint in H2, then dim(H1) = dim(H2) =
dim(F ) − 1, with neither H1 nor H2 collapsed earlier.

Proof Let {xir , xis } be the deletion pair inducing the collapse of F , with
xir ∈ x(H1) and xis ∈ x(H2). Then x(H1)|xi1 ···xis

must be reduced, since oth-
erwise H1 and likewise F would have been collapsed earlier. This implies
x(H2)|xi1 ···xis

must also be reduced. Thus, neither H1 nor H2 will have been
collapsed earlier, from which the result follows by comparing wordlengths. �

Now we check the various hypotheses of Theorem 4.21 (as extended in
Corollary 4.24), using our collapses and parallel-like curves from Defini-
tion 6.18 and from the discussion just after Example 6.17 as applied to our
framework. To check these conditions for the k-th collapse, we assume by
induction that all earlier collapses were performed successfully. In particular,
this means that we assume that we had a regular CW complex after each ear-
lier collapsing step and hence that (LUB) held after each earlier collapsing
step. However, we do not need to check (DIP) or (DE) for the curves used in
the k-th collapse at each earlier step. Rather, it suffices to check these condi-
tions just before the k-th collapse for the curves used to accomplish the k-th
collapse.

The fact that the level curves to be used in our collapses, defined in Defi-
nition 6.18, satisfy the first requirement for parallel-like curves is immediate
from our set-up. Now let us confirm that the level curves used for the k-th
collapse also satisfy the third requirement of parallel-like curves, the (DIP)
condition, just prior to the k-th collapsing step, using that earlier collapses
were all performed successfully.

When a collapse identifies cells A and A′ via a deletion pair {xiu, xiv }, we
say that xiu is exchanged for xiv , denoted xiu → xiv .

Lemma 6.28 If a cell H1 ⊆ G1 is collapsed prior to the collapse of Fj , where
H1 is to be identified with H2 in the collapsing step given by (Fj , {xir , xis })
by an exchange of xir ∈ H1 for xis ∈ H2 for r < s, then H1 ∨ H2 is also
collapsed prior to Fj , and in such a way that any two level curves with the
same endpoint in H1 will have already been identified with each other in a
manner that preserves the parametrization.

Proof Given the two x-expressions x(H2)|xi1 ···xis
= xij1

· · · x̂ir · · ·xis and
x(H1)|xi1 ···xis

= xij1
· · ·xir · · · x̂is , the fact that H1 has already been collapsed
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means xij1
· · ·xir · · · x̂is is not reduced, implying that xij1

· · ·xir · · ·xis =
x(H1 ∨ H2) also is not reduced. Moreover, H1 will have been collapsed
based on a deletion pair strictly to the left of xis , which implies the same
for H1 ∨ H2. Our collapsing order ensures that H1 ∨ H2 will also have been
collapsed prior to the collapse of Fj , using the same deletion pair and the
same series of braid moves as in H1, hence the same parametrization for each
curve in H1 as in the curves with which it is identified in H1 ∨ H2. �

Next we verify that the second requirement for parallel-like curves, Condi-
tion (DE), holds just prior to the k-th collapse for the curves used to accom-
plish the k-th collapse.

Lemma 6.29 Condition 4.11 (DE) holds at the k-th collapsing step, provided
that the earlier collapses were performed successfully.

Proof Suppose F is collapsed during the k-th collapsing step via deletion pair
{xlk , xrk } having parameters {tlk , trk }. We are not assuming F is necessarily
the maximal face Fk among those faces which are collapsed at this step. Let
{urk−1, urk } be the new parameters for the stuttering pair obtained from the
deletion pair {xlk , xrk } by a suitable coordinate change as in Lemma 6.24. Let
G1 and G2 be the closed faces containing opposite endpoints of the curves
across which F is collapsed, i.e. the curves introduced in Definition 6.18.
Thus, G1 has trk = 0 and G2 has tlk = 0, with x(G1), x(G2) and x(F ) agree-
ing at all other positions. In the new coordinates, G1 has urk = 0 while G2
instead has urk−1 = 0.

What we must prove is that G1 and G2 are not identified in an earlier col-
lapse. Suppose otherwise. By induction, we may assume that the complex is
regular immediately after each earlier collapsing step. This precludes G1 and
G2 from being incomparable in the closure poset just prior to their identifi-
cation, unless there is a face G having G1,G2 ⊆ G which is also identified
with both of them at that same earlier step by collapsing G across parallel-
like curves each having one endpoint in G1 and the other endpoint in G2.
But then we may use (LUB) for that earlier collapse to deduce that all least
upper bounds for G1 and G2 must have been collapsed at this earlier step,
which would necessarily include a face in F other than F itself. But this
implies that G1 and G2 both have dimension at least two less than F , contra-
dicting what we just proved in Lemma 6.27. Suppose on the other hand we
have G1 ⊆ G2 or G2 ⊆ G1 just prior to their identification. But this implies
dim(G1) �= dim(G2), again contradicting our result from Lemma 6.27 that
dim(G1) = dim(G2) = dim(F ) − 1. �

In the proof of the next lemma, we often speak of a cell A ∈ (Rd
≥0 ∩

Sd−1
1 )/ ∼k , whereby we mean the equivalence class under ∼k that contains
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the cell A from R
d
≥0 ∩ Sd−1

1 . Referring in this manner to particular equiv-
alence class representatives has the advantage that there is a unique associ-
ated x-expression x(A) for that representative and also allows us to make
sense of A ∨ B as being the equivalence class under ∼k that includes the join
of the representatives A and B where join is taken in the original simplex
R

d
≥0 ∩ Sd−1

1 . Thus, x(A) ∨ x(B) = x(A ∨ B) is the x-expression comprised
of the union of the x-expressions for A and B . In particular, x(Fk) denotes
the x-expression for the ∼k-equivalence class representative with respect to
which Fk is collapsed, namely one yielding optimal x-expression in terms of
our collapsing order.

Lemma 6.30 Condition 4.19 (LUB) holds at the k-th collapsing step, pro-
vided that all earlier collapsing steps were performed successfully.

Proof Suppose that the collapsing step given by a triple (Fk, {xilk
, xirk

})
causes a pair of cells A and B to be identified where neither cell has been
collapsed yet and neither is in the closure of the other (the latter of which
would make the result trivial). By virtue of our collapsing process, this im-
plies that we may choose x(A) and x(B) to be subexpressions of x(Fk)

which coincide except in that x(A) includes the letter xirk
whereas x(B)

instead includes the letter xilk
. In other words, there must exist ∼k equiv-

alence class representatives with this property. Let F be the cell such that
x(F ) = x(B) ∨ {xirk

} = x(A) ∨ {xilk
}. We note that F might equal Fk , or

F might be a lower-dimensional cell contained in the closure Fk . By defini-
tion, F has dimension exactly one more than A and B . Our collapsing order
ensures that F could not have been collapsed prior to our current step collaps-
ing Fk unless it were done through the earlier identification of F with another
cell F ′ designated for collapse earlier than F , where F ′ is obtained from F

by replacing xirk
with some xil′ with lk < l′ < rk ; however, such a step would

have also identified A with B earlier, a contradiction. Thus, we are assured of
the existence of such an F which is not collapsed prior to step k and which
satisfies x(F ) = x(A) ∨ x(B) and dim(F ) = dim(A) + 1 = dim(B) + 1.

By virtue of our collapsing process, the collapse of Fk will induce at the
same time the collapse of F across curves as defined in Definition 6.18
(which we will eventually prove are parallel-like) with each curve having
one endpoint in A and the other endpoint in B . Lemma 6.23 allows us to
assume that all possible identifications present in ∼rk−1 have already been
accomplished before the k-th collapse. Let x(F ′) be an x-expression for any
other cell besides F that is a least upper bound for A and B just prior to
the k-th collapse. If there is such an F ′ distinct from F , then there must be
cells Au, Bv ⊆ F

′
having x(Au) and x(Bv) as subexpressions of x(F ′) with

x(F ′) = x(Au) ∨ x(Bv), A ∼k Au and B ∼k Bv . Our plan now is to obtain
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from this a contradiction so as to deduce that no such F ′ exists, thereby prov-
ing (LUB). To this end, we will prove either (1) that F ′ was already identified
with F at an earlier step, (2) that F ′ is not a least upper bound for A and B

just prior to the k-th collapse due to the presence of an upper bound strictly
contained in it, or (3) that Au ∼k Bv .

The fact that we have only done identifications based on deletion pairs
whose right endpoint is at or to the left of xirk

prior to the k-th collaps-
ing step implies that A, Au, B , and Bv all must coincide with each other
to the right of xirk

. We also know that w(Au|xi1 ···xirk
) = w(A|xi1 ···xirk

) and
w(Bv|xi1 ···xirk

) = w(B|xi1 ···xirk
), since A ∼k Au and B ∼k Bv . By defini-

tion of deletion pair, we have w(A|xi1 ···xirk
) = w(B|xi1 ···xirk

), which implies
w(Au|xi1 ···xirk

) = w(Bv|xi1 ···xirk
) as well.

Now consider the case where xirk
/∈ x(F ′) = x(Au) ∨ x(Bv). It follows

immediately from w(x(A)|xi1 ···xirk
) = w(x(B)xi1 ···xirk

) that we also have
w(Au|xi1 ···xirk−1

) = w(Bv|xi1 ···xirk−1
). But now we may use Lemma 6.23 to

conclude that Au must get identified with Bv under one of the steps lead-
ing to ∼rk−1 and hence prior to step k . But by Lemma 6.22, this implies
Au ∼k Bv , completing this case.

The remainder of the proof deals with the case xirk
∈ x(F ′) = x(Au ∨

Bv) = x(Au) ∨ x(Bv). First suppose that both x(Au) and x(Bv) include the
letter xirk

. Notice that x(Au)|xi1 ···xirk−1
and x(Bv)|xi1 ···xirk−1

must both be

reduced, since neither of these cells has been collapsed yet. We also have
w(Au|xi1 ···xirk

) = w(Bv|xi1 ···xirk
). Hence, if xirk

is nonredundant in both Au

and Bv , then this together implies w(Au|xi1 ···xirk−1
) = w(Bv|xi1 ···xirk−1

). These

two words x(Au) and x(Bv) also coincide on the subexpression consisting of
xirk

and all letters to its right, implying Au ∼rk−1 Bv and hence Au ∼k Bv , a
contradiction. Next suppose that xirk

is present but redundant in x(Bv), that is,
suppose w(x(Bv)|xi1 ···xirk−1

) = w(x(Bv)|xi1 ···xirk
); also suppose xirk

is present

in x(Au). Then consider x(B ′
v) obtained from x(Bv) by deleting xirk

. Then
Au ∨ Bv = Au ∨ B ′

v , which means that it suffices to show that Au ∨ B ′
v is

collapsed by the end of the k-th collapsing step so as to deduce that Au ∨ B ′
v

is also collapsed by the end of the k-th collapsing step. Our remaining argu-
ments will cover the case of such Au ∨ B ′

v .
Henceforth, we assume xirk

∈ x(Au) and xirk
/∈ x(Bv). Notice that x(Au)∨

x(Bv)|xi1 ···xirk−1
must be reduced, since otherwise Au ∨ Bv would have al-

ready been collapsed by the series of collapses yielding ∼rk−1, by virtue of
our collapsing order and our use of induction on length. Thus, we have two
cases left to consider, depending whether (a) (x(Au ∨ Bv))|xi1 ···xirk

is also
reduced, or (b) xirk

forms a deletion pair with a letter to its left in x(Au ∨Bv).
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Now to (a), namely the case where x(Au ∨ Bv)|xi1 ···xirk
is reduced.

The Coxeter group element w(x(Au)|xi1 ···xirk
) = w(x(Bv)|xi1 ···xirk

) =
w(x(Bv)|xi1 ···xirk−1

) must in this case be strictly less than w((Au ∨
Bv)|xi1 ···xirk

) in Bruhat order. It follows from this that reading x(Au ∨
Bv)|xi1 ···xirk

from left to right, we must encounter a leftmost letter xij whose
associated reflection is not one of the associated reflections for x(Au)|xi1 ···xirk

and likewise for x(Bv)|xi1 ···xirk
, hence a letter xij which may be deleted to ob-

tain a new x-expression x(Au ∨ Bv)|xi1 ···xirk
\ xij where just the letter xij has

been deleted; this expression will have the property that its associated Cox-
eter group element is again greater than or equal to both w(x(Au)|xi1 ···xirk

)

and w(x(Bv)|xi1 ···xirk
) in Bruhat order. Choose the leftmost such letter xij

If j �= rk , we must therefore have Au ∼rk−1 A′ for some A′ such that x(A′)
is a subexpression of x(Au ∨ Bv) \ xij , with x(A′) including xirk

, omitting
xij , and satisfying w(x(A′)|xi1 ···xirk−1

) = w(x(Au)|xi1 ···xirk−1
), by virtue of

Lemma 6.23 together with the definition of Bruhat order as an order based on
taking subwords. Similarly, there must exist B ′ with x(B ′) also a subexpres-
sion of x(Au ∨Bv)\xij such that Bv ∼rk−1 B ′ for x(B ′) omitting both xij and
xirk

, with w(x(Bv)|xi1 ···xirk−1
) = w(x(B ′)|xi1 ···xirk−1

). Thus, x(Au ∨ Bv) \ xij

gives an upper bound for x(Au) and x(Bv) which is strictly contained in
x(F ′) = x(Au ∨ Bv) with w(x(Au ∨ Bv)) �= w(x(Au ∨ Bv) \ xij ), contra-
dicting F ′ being a least upper bound for Au and Bv .

If j = rk , then l(w(x(Au ∨ Bv)|xi1 ···xirk
)) = l(w(x(Au)|xi1 ···xirk

)) + 1 =
l(w(x(Bv)|xi1 ···xirk

)) + 1 where l denotes Coxeter-theoretic length. But since
x(Au ∨ Bv)|xi1 ···xirk

is reduced, we cannot delete from it one letter to obtain
x(Au)|xi1 ···xirk

and a different individual letter to obtain x(Bv)|xi1 ···xirk
, since

that would imply w(x(Au)|xi1 ···xirk
) �= w(x(Bv)|xi1 ···xirk

) by the exchange ax-
iom for Coxeter groups, a contradiction. This completes our proof in case (a).

Now to case (b), i.e. the case where xirk
is redundant in x(Au ∨Bv)|xi1 ···xirk

and where x(Au ∨ Bv)|xi1 ···xirk−1
is reduced. We then have Au ∨ Bv ∼rk−1

A ∨ B unless w(x(Au ∨ Bv)|xi1 ···xirk−1
) �= w(x(A ∨ B)|xi1 ···xirk−1

), since xirk

appears both in x(A∨B)|xi1 ···xirk
and in x(Au ∨Bv)|xi1 ···xirk

and is redundant
in both. But w(x(A∨B)|xi1 ···xirk

) also equals w(Bv|xi1 ···xirk−1
) which is a sub-

word of w(x(Au ∨ Bv)|xi1 ···xirk−1
), so this implies that w(x(A ∨ B)|xi1 ···xirk

)

must be strictly less than w(x(Au ∨ Bv)|xi1 ···xirk−1
) in Bruhat order. But this

means there is a letter xij we may delete from x(Au ∨Bv)|xi1 ···xirk−1
to obtain

a word whose associated Coxeter group element is still greater than or equal
to w(x(Bv)|xi1 ···xirk−1

) in Bruhat order, and hence is also greater than or equal



106 P. Hersh

to w(x(Au)|xi1 ···xirk−1
) in Bruhat order since

w
(
x(Au)|xi1 ···xirk

−1

) ≤Bruhat w
(
x(Au)|xi1 ···xrk

) = w
(
x(Bv)|xi1 ···xirk−1

)
.

But then deleting this xij from x(Au ∨ Bv) yields an upper bound for Au

and Bv just prior to the k-th collapse whose x-expression is strictly con-
tained in x(Au ∨ Bv) with distinct associated Coxeter group elements, i.e.
with w(x(Au ∨ Bv) \ xij |xi1 ···xirk−1

) �= w(x(Au ∨ Bv)|xi1 ···xirk
−1). Thus, we

get a cell that is an upper bound for Au and Bv that is strictly contained in
Au ∨ Bv , contradicting Au ∨ Bv being a least upper bound. This completes
case (b). �

Next, we give a projection map πv
u from any closed cell σv in (Rd

≥0 ∩
Sd−1

1 )/ ∼ onto an open cell σu in its boundary, choosing our notation to reflect
that σv is mapped by f(i1,...,id ) to Yv while σu is mapped by f(i1,...,id ) to Yo

u .
To be more precise, πv

u applies to the union of open cells contained in σv that
have σu in their closure. Once equipped with this projection map, we may
define the links of cells using the notion of link provided in Definition 4.25
which is based on ideas from stratified Morse theory (cf. [14]). It is most
natural to define this projection map using all of Rd

≥0 at once and its quotient
spaces R≥0/∼ as well as R≥0/∼k induced by the collapsing process that we
have developed over the course of this section. This is the approach that we
take.

Definition 6.31 Consider any x = (t1, . . . , td) in the aforementioned do-
main of πv

u , choosing the representative for the equivalence class of x un-
der ∼ whose only nonzero parameters appear in the positions of letters in
the rightmost reduced word for v appearing as a subword of (i1, . . . , id).
Let (ij1, . . . , ijr ) be this subword. The projection map given by u ⊆ v, de-
noted πv

u , sets to 0 each ti not appearing in either the rightmost subword
of (ij1, . . . , ijr ) that is a reduced word for u or obtained by reading our word
from right to left, including additionally just those letters which are redundant
(in the sense of not increasing the 0-Hecke algebra theoretic length) when ap-
pended to the word comprised of those letters to its right that have already
been chosen.

For intermediate stages in the collapsing process, instead of projecting onto
a cell indexed by u ∈ W , we project to a ∼k-equivalence class of faces of
the simplex, each of which maps to Yo

u under f(i1,...,id ). The corresponding
intermediate projection maps are defined completely analogously to πv

u , but
now using only those subwords belonging to the allowed equivalence classes
mapping under f(i1,...,id ) to cells Yo

u′ with u ≤ u′ ≤ v.
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We now prove the main theorem of this section, which is largely a mat-
ter of pulling together the various lemmas we have proven already. This will
require some further notation. Let (i ′1, . . . , i′d ′) be the subword of (i1, . . . , id)

associated to the maximal cell Fk to be collapsed at the k-th collapsing step,
so d ′ is the wordlength of x(Fk). Let (j ′

1, . . . , j
′
d ′) be the word obtained

from (i ′1, . . . , i′d ′) by applying the series of braid moves giving rise to the
change of coordinates homeomorphism ch, i.e. the chosen series of (long and
short) braid moves applied to (i ′1, . . . , i′d ′) yielding a stutter between positions
r − 1 and r to be used to induce our collapse of Fk . Note that there must be
some r such that (i ′r , . . . , i′d ′) = (irk , . . . , id) = (j ′

r , . . . , j
′
d ′). The restriction

of ∼rk−1
(i1,...,id ) to Fk equals the equivalence relation ∼r−1

(i′1,...,i′d′ )
. This also car-

ries out exactly the same identifications as ∼r−1
(j ′

1,...,j
′
d′ )

after suitable change of

coordinates.

Theorem 6.32 (Rd
≥0 ∩ Sd−1

1 )/∼ is a regular CW complex homeomorphic to
a ball. Moreover, the link of any cell is also a regular CW complex homeo-
morphic to a ball.

Proof We start our proof with the simplex K0 = R
d
≥0 ∩ Sd−1

1 . We perform on
K0 a series of collapses, using Theorem 4.21 and its generalization described
in Corollary 4.24 to justify that each of these collapses preserves homeomor-
phism type as well as the property of having a regular CW complex. These
collapses use the families of curves introduced in Definition 6.18. We assume
inductively that all earlier collapses were performed successfully in order to
justify that the k-th collapse preserves homeomorphism type, regularity, and
all the requisite properties for our inductive step. We also assume inductively
all results in the paper for all strictly smaller d .

We use the cell collapsing order given just after Example 6.17. The
k-th collapsing step is specified by a deletion pair {xilk

, xirk
} in an x-

expression x(Fk), with the cell Fk/ ∼k∈ (Rd
≥0 ∩ Sd−1

1 )/ ∼k collapsed across

curves each having one endpoint in the closed cell G1/ ∼k which consists of
the points of Fk/ ∼k with tlk = 0 and the other endpoint in the closed cell
G2/ ∼k instead having trk = 0. The series of lemmas we have just proven
will allow us to verify all the requirements for our curves to be a parallel-like
family of curves (in the extended sense of Corollary 4.24) and to check all of
the hypotheses of Theorem 4.21 (again as extended in Corollary 4.24), once
we show how to incorporate the requisite change of coordinates homeomor-
phisms ch into the picture. This change of coordinates which will help us
accomplish the k-th collapse will be done on (Rd

≥0 ∩ Sd−1
1 )/ ∼rk−1 to create

a stutter, so in particular will be done prior to the k-th collapse.
The fact that irk = i ′r is the leftmost right endpoint of a deletion pair in

x(Fk) implies that (i ′1, . . . , i′r−1) is reduced and hence that (j ′
1, . . . , j

′
r−1) is
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also reduced with w(i ′1, . . . , i ′r−1) = w(j ′
1, . . . , j

′
r−1) and hence w(i ′1, . . . , i′d ′)

= w(j ′
1, . . . , j

′
d ′). Let us also now choose a reduced word (j1, . . . , jd) such

that ji = j ′
i for all i ≤ d ′. The point of extending (j ′

1, . . . , j
′
d ′) to this longer

reduced word (j1, . . . , jd) is to have at our disposal a regular CW ball
(Rd

≥0 ∩ Sd−1
1 )/ ∼r−1

(j1,...,jd ) given by (j1, . . . , jd) with this ball of the correct

dimension so as to be homeomorphic to the complex (Rd
≥0 ∩ Sd−1

1 )/ ∼m

given by (i1, . . . , id) for each m > 0 and which for m ≥ k will also have
(Rd ′

≥0 ∩ Sd ′−1
1 )/ ∼(j ′

1,...,j
′
d′ ) as a subcomplex.

The image under ch of each curve in our family covering Fk/ ∼r−1
(i′1,...,i′d′ )

will be a collection of points (t ′1, . . . , t ′d) with t ′rk−1 + t ′rk held constant

and each t ′i for i /∈ {rk − 1, rk} also held constant, all within (Rd ′
≥0 ∩

Sd ′−1
1 )/ ∼r−1

(i′1,...,i′d′ )
. This will imply that ch maps our family of curves to the

images under a series of collapsing maps of a family of parallel line seg-
ments covering the cell having the structure (Rd ′

≥0 ∩Sd ′−1
1 )/ ∼r−1

(j ′
1,...,j

′
d′ )

within

the regular CW complex (Rd
≥0 ∩ Sd−1

1 )/ ∼r−1
(j1,...,jd ). In particular, ch−1 also

thereby will induce a transfer of a parametrization function to each nontriv-
ial curve in the closed cell Fk/ ∼rk−1

(i1,...,id ) in (Rd
≥0 ∩ Sd−1

1 )/ ∼rk−1
(i1,...,id ) which

is a continuous function to [0,1] on the union of these nontrivial curves.
Moreover, condition (DE) together with the fact that collapses subsequent to
those producing ∼rk−1 and leading to ∼k restrict to homeomorphisms on each
closed cell that they do not collapse will imply that these collapses will also
carry forward these curve parametrizations for all curves that stay nontrivial
under the intermediate collapses to the quotient complex (Rd

≥0 ∩ Sd−1
1 )/ ∼k

from the quotient complex (Rd
≥0 ∩ Sd−1

1 )/ ∼rk−1. Thus, our parallel-like

curves for Fk/ ∼k will be the images under ch−1 of these parallel-like curves
from (Rd

≥0 ∩ Sd−1
1 )/ ∼r−1

(j1,...,jd ), pushed forward by the collapses yielding ∼k

from ∼rk−1
(i1,...,id ). Now let us carefully define the change of coordinates map ch

(and thereby ch−1).
This map ch is most naturally defined on the closed cell Fk/ ∼rk−1

(i1,...,id ).
Lemma 6.24 (as explained in Remark 6.26) proves ch is a cell struc-
ture preserving homeomorphism from Fk/ ∼r−1

(i′1,...,i′d′ )
= Fk/ ∼rk−1

(i1,...,id ) to

(Rd ′
≥0 ∩ Sd ′

1 )/ ∼r−1
(j ′

1,...,j
′
d′ )

. Let us now show how ch (or equivalently ch−1)

may be extended to a homeomorphism from the entire quotient complex
(Rd

≥0 ∩ Sd−1
1 )/ ∼rk−1

(i1,...,id ) to the quotient complex (Rd
≥0 ∩ Sd−1

1 )/ ∼rk−1
(j1,...,jd )

given by the word (j1, . . . , jd). It will be a necessity for our upcoming
approach to collapsing Fk/ ∼k via transfer of parallel-like curves carried
out by the map ch−1 that f(i′1,...,i′d′ )(x) = f(j ′

1,...,j
′
d′ )(ch(x)) for each x ∈
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Fk/ ∼rk−1
(i1,...,id ); however, this relationship between x and ch(x) will not be

needed for the extension of ch−1 to points x outside of Fk/ ∼k , because the
collapsing map we will use to collapse Fk will restrict to an injection out-
side of Fk/ ∼k . Thus, we may simply extend ch−1 to a neighborhood N of
Fk/ ∼k by thickening the boundary of Fk/ ∼k to ∂(F k)/ ∼k ×[0, ε) and let-
ting ch−1(x, t) = (ch−1(x), t) for each t ∈ [0, ε). This thickening is possible
since the closed complement of Fk within the boundary of a cell of dimension
one higher is a topological manifold with boundary, by Lemma 4.21 applied
to the earlier collapse, hence has a collar by Theorem 2.8.

It is worth emphasizing that the transfer of curve parametrizations result-
ing from ch−1 will not in any way actually modify the collapsing procedure
that we already indicated we would use and which has been described and
analyzed in detail earlier in this section of the paper. Rather, the map ch−1

on Fk is used to justify that we indeed have parallel-like curves in a suitable
sense (i.e. as in Corollary 4.24) to enable the collapse of Fk even when long
braid moves are needed to create a stutter in x(Fk); we do this by giving an
alternate way that we could have obtained the closed cell Fk/ ∼r−1

(i′1,...,i′d′ )
. This

in turn gives an alternate way we could have obtained the closed cell Fk/ ∼k

by performing exactly the collapses on (Rd
≥0 ∩ Sd−1

1 )/ ∼rk−1
(i1,...,id ) (and in the

process also on Fk/ ∼r−1
(i′1,...,i′d′ )

that we had planned for word (i1, . . . , id) to get

from the equivalence relation ∼rk−1 to the equivalence relation ∼k , but hav-
ing incorporated the transfer map ch−1 at the step where we had equivalence
relation ∼rk−1. In other words, we regard (Rd

≥0 ∩ Sd−1
1 )/ ∼rk−1

(i1,...,id ) as our

starting point complex K0 for purpose of justifying the collapse of Fk/ ∼k .
Having now realized our curves from Definition 6.18 as the images of par-

allel line segments in a suitable sense, i.e. with a transfer from one complex
to another complex potentially involved, we now turn to the remaining re-
quirements for parallel-like curves. Lemmas 6.29, 6.30 and 4.19 confirm that
the requirements (DIP), (DE) (as defined in Conditions 4.9 and 4.11, respec-
tively) and condition (LUB) hold for the family of curves to be collapsed in
the k-th collapse just prior to this collapse, assuming all earlier collapses were
done successfully. Thus, all of the requirements of Theorem 4.21 (or at least
their relaxations as in Corollary 4.24) are met, enabling us to repeatedly col-
lapse cells until all cells given by non-reduced subwords of (i1, . . . , id) have
been eliminated, preserving homeomorphism type and regularity at each step.
Thus, the end result is a regular CW complex homeomorphic to a ball. Regu-
larity and homeomorphism type for links, as defined in Definition 4.25, follow
from Lemma 6.27, since it allows us to invoke Lemma 4.26, noting that the
transversality requirements follow easily from the definition of our series of
projection maps. �
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6.3 Regularity and homeomorphism type of Yw

We now finally turn to studying the topological structure of Yw itself. We will
use the fact that (Rd

≥0 ∩ Sd−1
1 )/ ∼ is a regular CW complex homeomorphic

to a ball to prove now that Yw is as well. First we must verify Condition 4
of Theorem 1.3 for the characteristic maps f(i1,...,id ) : (Rd

≥0 ∩Sd−1
1 )/ ∼→ Yw

and their restrictions to the closed cells of (Rd
≥0 ∩ Sd−1

1 )/ ∼. This is done in
Lemma 6.33 below, which will only require the following properties of ∼,
which are immediate from the definition of ∼:

(1) Each p ∈ ∂(Rd
≥0 ∩ Sd−1

1 ) whose x-expression is not reduced is identified
by ∼ with a point having more parameters set to 0

(2) p ∼ q implies w(f(i1,...,id )(p)) = w(f(i1,...,id )(q)).

The points in a cell boundary, i.e. the preimage of one of the attaching
maps, are obtained by setting some positive parameters to 0.

Lemma 6.33 Given a reduced word (i ′1, . . . , i′d ′) which is a subword of re-
duced word (i1, . . . , id), then f(i1,...,id ) restricted to the codimension one faces
of F = R{i′1,...,i′d′ }/ ∼ is an injection into Ysi′1

···si′
d′

.

Proof Notice first that f(i1,...,id )|F = f(i′1,...,i′d′ ). By Lemma 2.16, this means

that w(xi′1 · · · x̂i′r · · ·xi′
d′ ) �= w(xi′1 · · · x̂i′

r′
· · ·xi′

d′ ) for r �= r ′, provided that both
expressions are reduced, since that implies that the map w just replaces each
xi by simple reflection si . Consequently, boundary points obtained by send-
ing distinct single parameters to 0 to obtain reduced expressions of length
one shorter must belong to distinct cells, hence have distinct images under
f(i′1,...,i′d′ ). On the other hand, varying values of the nonzero parameters while
keeping fixed which parameters are 0 and which are nonzero with the subex-
pression of nonzero parameters a reduced expression must also yield points
with distinct images under f(i′1,...,i′d′ ), since Lusztig proved that f(i′1,...,i′d′ ) acts

homeomorphically on R
s
>0 for (i ′1, . . . , i′d ′) reduced. Combining yields that

f(i′1,...,i′d′ ) is injective upon restriction to the codimension one cells, as de-
sired. �

Now to our main result, Theorem 6.34. It is phrased in a somewhat
technical way so as to enable proof by induction on the length d , and
also to overcome the challenge that it was not known previously even that
f(i1,...,id )((R

d
≥0 ∩ Sd−1

1 )/ ∼) was a CW complex. Theorem 6.34 is immedi-
ately followed by corollaries with more natural statements.

To use Theorem 1.3 in proving Theorem 6.34, we will need the preimages
of the various characteristic maps to be closed cells in (Rd

≥0 ∩Sd−1
1 )/ ∼, since
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this will give condition 5 of our regularity criterion. It is not clear that taking
the closure in (Rd

≥0 ∩ Sd−1
1 )/ ∼ of an open cell which is sent by f(i1,...,id ) to

Yσ for a Coxeter group element σ of length d ′ < d is the same as constructing
a complex (Rd ′

≥0 ∩ Sd ′−1
1 )/∼ for σ itself directly; we overcome this issue by

allowing flexibility in the choice of ∼ in the statement of the next theorem,
in particular allowing the collapsing maps for the closure of a cell which is
not top-dimensional to be induced from the collapsing maps on the entire
complex.

Theorem 6.34 Let (i1, . . . , id) be a reduced word for w ∈ W . Let ∼ be the
identifications given by any series of face collapses (cf. Definition 4.1) on
R

d
≥0 ∩ Sd−1

1 such that (1) x ∼ y implies f(i1,...,id )(x) = f(i1,...,id )(y), and
(2) the series of collapses eliminates all regions whose words are not re-
duced. Then f(i1,...,id ) : (Rd

≥0 ∩ Sd−1
1 )/∼ → Yw is a homeomorphism which

preserves cell structure.

Proof The proof is by induction on d , with the case d = 1 being trivial. There-
fore, we may assume the result for all finite Coxeter group elements of length
strictly less than d . Remark 2.5 enables us to deduce continuity of f(i1,...,id )

from continuity of f(i1,...,id ). Notice that f(i1,...,id ) restricts to any region ob-
tained by setting some ti’s to 0 since xi(0) is the identity matrix. Whenever
the resulting subword is reduced, results in [20] guarantee that f(i1,...,id ) acts
homeomorphically on this open cell. The requirements of Corollary 3.9 re-
garding closures of cells in the (d − 1)-skeleton follow from our inductive
hypothesis, along with the fact that any series of face collapses will restrict to
one on the closure of any cell. Thus, we may apply Corollary 3.9 to deduce
that f(i1,...,id )((R

d
≥0 ∩ Sd−1

1 )/∼) is a finite CW complex with the restrictions

of f(i1,...,id ) to the various cell closures in (Rd
≥0 ∩ Sd−1

1 )/∼ giving the char-
acteristic maps, and that this CW complex structure satisfies conditions 1, 2
and 5 of Theorem 1.3. Lemma 6.33 confirmed condition 4 of Theorem 1.3,
while the result of [6] that Bruhat order is shellable and thin gives condition 3.
Thus, by Theorem 1.3, f(i1,...,id )((R

d
≥0 ∩ Sd−1

1 )/∼) is a regular CW complex

with characteristic maps given by the restrictions of f(i1,...,id ) to the various
cell closures, which is exactly what is needed. �

Corollary 6.35 If (i1, . . . , id) is a reduced word for w, then f(i1,...,id ) induces
a homeomorphism f(i1,...,id ) : (Rd

≥0 ∩ Sd−1
1 )/∼ → Yw which preserves cell

structure. Hence, Yw is a regular CW complex homeomorphic to a ball with
Bruhat interval (1,w] as its closure poset.

Proof By Theorem 6.32, K = (Rd
≥0 ∩ Sd−1

1 )/∼ is a regular CW complex
homeomorphic to a ball. We chose ∼ so that f(i1,...,id )(x) = f(i1,...,id )(y)
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whenever x ∼ y. Combining with Lusztig’s result that f(i1,...,id ) is continuous
on R

d
≥0 ∩ Sd−1

1 and a homeomorphism on R
d
>0 ∩ Sd−1

1 (see [20], Sect. 4]),
as well as the fact that our collapsing maps are identification maps, it follows
that f(i1,...,id ) is also continuous on K . In particular, K meets all the require-
ments of Theorem 6.34. �

Corollary 6.36 For (t1, . . . , td), (t ′1, . . . , t ′d) ∈ R
d
≥0 and (i1, . . . , id) any re-

duced word,

xi1(t1) · · ·xid (td) = xi1

(
t ′1

) · · ·xid

(
t ′d

)
iff (t1, . . . , td) ∼ (

t ′1, . . . , t ′d
)
.

Finally we consider lk(u,w). Theorem 6.32 proved regularity and deter-
mined homeomorphism type for the links of the cells in (Rd

≥0 ∩ Sd−1
1 )/ ∼,

using the natural projection map in that context (cf. Definition 6.31). This
immediately transfers to yield analogous results for links in Yw via our cell-
preserving homeomorphism f(i1,...,id ).

Corollary 6.37 For each u < w in Bruhat order, the subcomplex lk(u,w) of
Yw obtained as the image under the cell-preserving homeomorphism f(i1,...,id )

of the corresponding link within R
d
≥0/∼ is a regular CW complex homeo-

morphic to a ball having the Bruhat interval (u,w] as its poset of closure
relations.

We expect that this notion of link should coincide, at least up to homeo-
morphism, with the notion of link given by Fomin and Shapiro for Yw in [11]
by virtue of Thom’s first isotopy lemma (cf. [14]).

It would be interesting to understand better how lk(u,w) relates both to
subword complexes (cf. [17–19]) and also to the synthetic CW complexes for
Bruhat intervals studied by Reading in [27].
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