657 research outputs found

    Maximum size binary matroids with no AG(3,2)-minor are graphic

    Full text link
    We prove that the maximum size of a simple binary matroid of rank r≥5r \geq 5 with no AG(3,2)-minor is (r+12)\binom{r+1}{2} and characterise those matroids achieving this bound. When r≥6r \geq 6, the graphic matroid M(Kr+1)M(K_{r+1}) is the unique matroid meeting the bound, but there are a handful of smaller examples. In addition, we determine the size function for non-regular simple binary matroids with no AG(3,2)-minor and characterise the matroids of maximum size for each rank

    Representing some non-representable matroids

    Get PDF
    We extend the notion of representation of a matroid to algebraic structures that we call skew partial fields. Our definition of such representations extends Tutte's definition, using chain groups. We show how such representations behave under duality and minors, we extend Tutte's representability criterion to this new class, and we study the generator matrices of the chain groups. An example shows that the class of matroids representable over a skew partial field properly contains the class of matroids representable over a skew field. Next, we show that every multilinear representation of a matroid can be seen as a representation over a skew partial field. Finally we study a class of matroids called quaternionic unimodular. We prove a generalization of the Matrix Tree theorem for this class.Comment: 29 pages, 2 figure

    Binary matroids and local complementation

    Full text link
    We introduce a binary matroid M(IAS(G)) associated with a looped simple graph G. M(IAS(G)) classifies G up to local equivalence, and determines the delta-matroid and isotropic system associated with G. Moreover, a parametrized form of its Tutte polynomial yields the interlace polynomials of G.Comment: This article supersedes arXiv:1301.0293. v2: 26 pages, 2 figures. v3 - v5: 31 pages, 2 figures v6: Final prepublication versio
    • …
    corecore