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We extend the notion of representation of a matroid to algebraic
structures that we call skew partial fields. Our definition of such
representations extends Tutte’s definition, using chain groups. We
show how such representations behave under duality and minors,
we extend Tutte’s representability criterion to this new class, and
we study the generator matrices of the chain groups. An example
shows that the class of matroids representable over a skew partial
field properly contains the class of matroids representable over
a skew field. Next, we show that every multilinear representation
of a matroid can be seen as a representation over a skew partial
field. Finally we study a class of matroids called quaternionic
unimodular. We prove a generalization of the matrix tree theorem
for this class.
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1. Introduction

A matrix with entries in R is totally unimodular if the determinant of each square submatrix is
in {−1,0,1}. A matroid is regular if it can be represented by a totally unimodular matrix. Regular
matroids are well-studied objects with many attractive properties. For instance, a binary matroid is
either regular, and therefore representable over every field, or it is representable only over fields of
characteristic 2.

Whittle proved a similar, but more complicated, classification of the representability of ternary
matroids [24,25]. His deep theorem is based on the study of representation matrices with structure
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similar to that of the totally unimodular matrices: the determinants of all square submatrices are
constrained to be in some subset of elements of a field. Similar, but more restricted, objects were
studied by Lee [12]. In 1996, Semple and Whittle [16] introduced the notion of a partial field as a
common framework for the algebraic structures encountered in Whittle’s classification. In Section 2
we give a short introduction to the theory of partial fields.

The main objective of this paper is to present an alternative development of the theory of matroid
representation over partial fields, based on Tutte’s theory of chain groups [18]. This approach has
several advantages over the treatments of partial fields in [16,15], the most notable being that we
do not require the concept of a determinant, and thus open the way to noncommutative algebra.
We devote Section 3 to the development of the theory of what we call skew partial fields. We note
that Vertigan [21] also studied matroid-like objects represented by modules over rings, but unlike his
results, our constructions will still have matroids as the underlying combinatorial objects.

The resulting matroid representations over skew partial fields properly generalize representations
over skew fields. In Section 3.5 we give an example of a matroid representable over a skew partial
field but not over any skew field.

In coding theory the topic of multilinear representations of matroids has received some atten-
tion [17]. Brändén has also used such representations to disprove a conjecture by Helton and Vin-
nikov [1]. In Section 4 we show that there is a correspondence between multilinear representations
over a field F and representations over a skew partial field whose elements are invertible n × n ma-
trices over F.

Finally, an intriguing skew partial field is the quaternionic unimodular skew partial field, a general-
ization of the sixth-roots-of-unity and regular partial fields. David G. Wagner (personal communica-
tion) suggested that a specialized version of the Cauchy–Binet formula should hold for quaternionic
matrices. In Section 5 we give a proof of his conjecture. As a consequence it is possible to count the
bases of these matroids. We conclude with a number of open problems.

2. A crash course in commutative partial fields

We give a brief overview of the existing theory of partial fields, for the benefit of readers with
no prior experience. First we introduce some convenient notation. If X and Y are ordered sets, then
an X × Y matrix A is a matrix whose rows are indexed by X and whose columns are indexed by Y .
If X ′ ⊆ X and Y ′ ⊆ Y , then A[X ′, Y ′] is the submatrix induced by rows X ′ and columns Y ′ . Also, for
Z ⊆ X ∪Y , let A[Z ] := A[X ∩ Z , Y ∩ Z ]. The entry in row i and column j is either denoted A[i, j] or Aij .

Definition 2.1. A partial field is a pair P = (R, G) of a commutative ring R and a subgroup G of the
group of units of R , such that −1 ∈ G .

We say p is an element of P, and write p ∈ P, if p ∈ G ∪ {0}. As an example, consider the dyadic
partial field D := (Z[ 1

2 ], 〈−1,2〉), where 〈S〉 denotes the multiplicative group generated by the set S .
The nonzero elements of D are of the form ±2z with z ∈ Z.

Definition 2.2. Let P = (R, G) be a partial field, and let A be a matrix over R having r rows. Then A is
a weak P-matrix if, for each r × r submatrix D of A, we have det(D) ∈ G ∪ {0}. Moreover, A is a strong
P-matrix if, for every square submatrix D of A, we have det(D) ∈ G ∪ {0}.

As an example, a totally unimodular matrix is a strong U0-matrix, where U0 is the regular partial
field (Z, {−1,1}). When we use “P-matrix” without adjective, we assume it is strong.

Proposition 2.3. Let P be a partial field, and A an X × E weak P-matrix. Let r := |X |. If det(D) 
= 0 for some
square r × r submatrix of A, then the set

BA := {
B ⊆ E: |B| = r, det

(
A[X, B]) 
= 0

}
is the set of bases of a matroid on E.
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Proof. Let I be a maximal ideal of R , so R/I is a field. A basic result from commutative ring the-
ory ensures that I exists. Let ϕ : R → R/I be the canonical ring homomorphism. Since ϕ(det(D)) =
det(ϕ(D)) for any matrix D over R , the usual linear matroid of ϕ(A) has the same set of bases
as BA . �

We denote the matroid from the theorem by M[A].

Definition 2.4. Let M be a matroid. If there exists a weak P-matrix A such that M = M[A], then we
say that M is representable over P.

The proof of the proposition illustrates an attractive feature of partial fields: homomorphisms pre-
serve the matroid. This prompts the following definition and proposition:

Definition 2.5. Let P1 = (R1, G1) and P2 = (R2, G2) be partial fields, and let ϕ : R1 → R2 be a function.
Then ϕ is a partial-field homomorphism if ϕ is a ring homomorphism with ϕ(G1) ⊆ G2.

Proposition 2.6. Let P1 and P2 be partial fields, and ϕ : P1 → P2 a partial-field homomorphism. If a ma-
troid M is representable over P1 , then M is representable over P2 .

As an example we prove a result by Whittle.

Lemma 2.7. (See Whittle [25].) Let M be a matroid representable over the dyadic partial field. Then M is
representable over Q and over every finite field of odd characteristic.

Proof. Since Z[ 1
2 ] is a subring of Q, finding a homomorphism ϕ : D → Q is trivial. Now let F be a

finite field of characteristic p 
= 2. Let ϕ : Z[ 1
2 ] → F be the ring homomorphism determined by ϕ(x) =

x mod p for x ∈ Z, and ϕ( 1
2 ) = 2p−1 mod p. The result now follows directly from Proposition 2.6. �

Whittle went further: he proved that the converse is also true. The proof of that result is beyond
the scope of this paper. The proof can be viewed as a far-reaching generalization of Gerards’ proof of
the excluded minors for regular matroids [9]. We refer the reader to [15,20] for more on the theory
of partial fields.

3. Chain groups

From now on, rings are allowed to be noncommutative. We will always assume that the ring has
a (two-sided) identity element, denoted by 1.

Definition 3.1. A skew partial field is a pair (R, G), where R is a ring, and G is a subgroup of the
group R∗ of units of R , such that −1 ∈ G .

While several attempts have been made to extend the notion of determinant to noncommutative
fields in the context of matroid representation [5,8], we will not take that route. Instead, we will by-
pass determinants altogether, by revisiting the pioneering matroid representation work by Tutte [18].
He defines representations by means of a chain group. We generalize his definitions from skew fields
to skew partial fields.

Definition 3.2. Let R be a ring, and E a finite set. An R-chain group on E is a subset C ⊆ R E such that,
for all f , g ∈ C and r ∈ R ,

(i) 0 ∈ C ,
(ii) f + g ∈ C , and

(iii) r f ∈ C .
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The elements of C are called chains. In this definition, addition and (left) multiplication with an
element of R are defined componentwise, and 0 denotes the chain c with ce = 0 for all e ∈ E . Note
that, if E = ∅, then R E consists of one element, 0. Using more modern terminology, a chain group
is a submodule of a free left R-module. Chain groups generalize linear subspaces. For our purposes,
a chain is best thought of as a row vector.

The support or domain of a chain c ∈ C is

‖c‖ := {e ∈ E: ce 
= 0}.

Definition 3.3. A chain c ∈ C is elementary if c 
= 0 and there is no c′ ∈ C − {0} with ‖c′‖� ‖c‖.

The following definition was inspired by Tutte’s treatment of the regular chain group [18, Sec-
tion 1.2].

Definition 3.4. Let G be a subgroup of R∗ . A chain c ∈ C is G-primitive if c ∈ (G ∪ {0})E .

We may occasionally abbreviate “G-primitive” to “primitive”. Now we are ready for our main def-
inition.

Definition 3.5. Let P = (R, G) be a skew partial field, and E a finite set. A P-chain group on E is an
R-chain group C on E such that every elementary chain c ∈ C can be written as

c = rc′

for some G-primitive chain c′ ∈ C and some r ∈ R .

Primitive elementary chains are unique up to scaling:

Lemma 3.6. Suppose c, c′ are G-primitive, elementary chains such that ‖c‖ = ‖c′‖. Then c = gc′ for some
g ∈ G.

Proof. Pick e ∈ ‖c‖, and define c′′ := (ce)
−1c −(c′

e)
−1c′ . Then ‖c′′‖� ‖c‖. Since c is elementary, c′′ = 0.

Hence c′ = c′
e(ce)

−1c. �
Chain groups can be used to represent matroids, as follows:

Theorem 3.7. Let P = (R, G) be a skew partial field, and let C be a P-chain group on E. Then

C ∗ := {‖c‖: c ∈ C, elementary
}

is the set of cocircuits of a matroid on E.

Proof. We verify the cocircuit axioms. Clearly ∅ /∈ C ∗ . By the definition of an elementary chain, if
X, Y ∈ C ∗ and Y ⊆ X , then Y = X . It remains to show the weak cocircuit elimination axiom. Let
c, c′ ∈ C be G-primitive, elementary chains such that ‖c‖ 
= ‖c′‖, and such that e ∈ ‖c‖ ∩ ‖c′‖. Define
d := (c′

e)
−1c′ − (ce)

−1c. Since −1, ce, c′
e ∈ G , it follows that d ∈ C is nonzero and ‖d‖ ⊆ (‖c‖∪‖c′‖)− e.

Let d′ be an elementary chain of C with ‖d′‖ ⊆ ‖d‖. Then ‖d′‖ ∈ C ∗ , as desired. �
We denote the matroid of Theorem 3.7 by M(C).
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Definition 3.8. We say a matroid M is P-representable if there exists a P-chain group C such that
M = M(C).

We will show in Section 3.4 that over commutative partial fields, Definition 3.8 coincides with
Definition 2.4.

3.1. Duality

Duality for skew partial fields is slightly more subtle than in the commutative case, as we have to
move to the opposite ring (see, for instance, Buekenhout and Cameron [3]).

Definition 3.9. Let R = (S,+, ·,0,1) be a ring. The opposite of R is

R◦ := (S,+,◦,0,1),

where ◦ is the binary operation defined by p ◦ q := q · p, for all p,q ∈ S .

Note that R and R◦ have the same ground set. Hence we may interpret a chain c as a chain over R
or over R◦ without confusion. We can extend Definition 3.9 to skew partial fields:

Definition 3.10. Let P = (R, G) be a skew partial field. The opposite of P is

P◦ := (
R◦, G◦),

where G◦ is the subgroup of (R◦)∗ generated by the elements of G .

Let R be a ring, and E a finite set. For two vectors c,d ∈ R E , we define the usual inner product
c · d := ∑

e∈E cede .

Lemma 3.11. Let R be a ring, let E be a finite set, and let C ⊆ R E be a chain group. Then the set

C⊥ := {
d ∈ R E : c · d = 0 for all c ∈ C

}
is a chain group over R◦ .

We call C⊥ the orthogonal or dual chain group of C .

Proof. Let c ∈ C , let f , g ∈ C⊥ , and let r ∈ R . Clearly 0 ∈ C⊥ . Also c · ( f + g) = 0 and c · ( f r) =
(c · f )r = 0, so both f + g ∈ C⊥ and r ◦ f ∈ C⊥ , as desired. �

For general chain groups, the dimension formula familiar from vector spaces over fields will not
carry over (see [19] for an example). However, for P-chain groups, things are not so bleak.

Theorem 3.12. Let P= (R, G) be a skew partial field, and let C be a P-chain group. Then the following hold.

(i) (C⊥)⊥ = C ;
(ii) C⊥ is a P◦-chain group;

(iii) M(C)∗ = M(C⊥).

To prove this result, as well as most results that follow, it will be useful to have a more concise
description of the chain group.
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Definition 3.13. Let R be a ring, E a finite set, and C ⊆ R E a chain group. A set C ′ ⊆ C generates C if,
for all c ∈ C ,

c =
∑
c′∈C ′

pc′c′,

where pc′ ∈ R .

Lemma 3.14. Let P = (R, G) be a skew partial field, let E be a finite set, and let C be a P-chain group on E. Let
B be a basis of M(C), and, for each e ∈ B, let ae be a G-primitive chain of C such that ‖ae‖ is the B-fundamental
cocircuit of M(C) containing e. Then C B := {ae: e ∈ B} is a minimal set that generates C .

Proof. Note that the lemma does not change if we replace ae by gae for some g ∈ G . Hence we may
assume that (ae)e = 1 for all e ∈ B .

First we show that C B generates C . Suppose otherwise, and let c ∈ C be a chain that is not gener-
ated by C B . Consider

d := c −
∑
e∈B

ceae.

Since d is not generated by C B , we have d 
= 0. Since C is a P-chain group, there is an elementary
chain d′ with ‖d′‖ ⊆ ‖d‖, and hence a cocircuit X of M(C) with X ⊆ ‖d‖. But X ∩ B = ∅, which is
impossible, as cocircuits are not coindependent. Hence we must have d = 0.

For the second claim, it suffices to note that (ae)e = 1 and (a f )e = 0 for all f ∈ B − {e}. �
Furthermore, it will be convenient to collect the chains {ae: e ∈ B} in the rows of a matrix.

Definition 3.15. Let A be a matrix with r rows and entries in a ring R . The row span of A is

rowspan(A) := {
z A: z ∈ Rr}.

We say A is a generator matrix for a chain group C if

C = rowspan(A).

Proof of Theorem 3.12. Pick a basis B of M := M(C), and pick, for each e ∈ B , a chain ae such that
‖ae‖ is the B-fundamental cocircuit using e, and such that (ae)e = 1. Let D be a B × (E − B) ma-
trix such that the row of A := [I D] indexed by e is ae . Define the matrix A∗ := [−DT I] over R◦ .
Statement (i) follows immediately from the following claim:

Claim 3.12.1. C⊥ = rowspan(A∗).

Proof. It is readily verified that rowspan(A∗) ⊆ C⊥ . Pick a chain d ∈ C⊥ , and e ∈ B . Since ae · d = 0,
we find

de = −
∑

f ∈E−B

(
ae)

f d f .

It follows that d is uniquely determined by the entries {d f : f ∈ E − B}, and that for each such
collection there is a vector d ∈ C⊥ . From this observation we conclude that C⊥ = rowspan(A∗). �
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Claim 3.12.2. For every circuit Y of M there is an elementary, G-primitive chain d ∈ C⊥ with ‖d‖ = Y .

Proof. Since the previous claim holds for every basis B of M(C), every circuit occurs as the support
of a row of a matrix A∗ for the right choice of basis. Hence it suffices to prove that such a row is
G-primitive and elementary.

From the definition of A∗ , it follows immediately that d is G-primitive. Suppose d is not elemen-
tary, and let d′ ∈ C⊥ be such that ‖d′‖ � ‖d‖. Now d′ is an R◦-linear combination of the rows of A∗ ,
and ‖d′‖ ∩ (E − B) contains at most one element. It follows that d′ is an R◦-multiple of d, a contra-
diction. �
Claim 3.12.3. If d is an elementary chain in C⊥ , then ‖d‖ is a circuit of M.

Proof. Suppose d is elementary, yet ‖d‖ is not a circuit of M . By the previous claim, ‖d‖ does not
contain any circuit, so ‖d‖ is independent in M . We may assume that B was chosen such that ‖d‖ ⊆ B .
Now d is an R◦-linear combination of the rows of A∗ , yet d f = 0 for all f ∈ E − B . This implies d = 0,
a contradiction. �

It now follows that C⊥ is indeed a P◦-chain group, and that M(C⊥) = M∗ . �
3.2. Minors

Unsurprisingly, a minor of a P-representable matroid is again P-representable.

Definition 3.16. Let P = (R, G) be a skew partial field, let C be a P-chain group on E , and let e ∈ E .
Then we define

C\e := {
c ∈ R E−e: there exists d ∈ C with c f = d f for all f ∈ E − e

}
,

C/e := {
c ∈ R E−e: there exists d ∈ C with de = 0, c f = d f for all f ∈ E − e

}
.

We omit the straightforward, but notationally slightly cumbersome, proof of the following result.

Theorem 3.17. Let P be a skew partial field, let C be a P-chain group on E, and let e ∈ E. The following are
true.

(i) C\e is a P-chain group, and M(C\e) = M(C)\e.
(ii) C/e is a P-chain group, and M(C/e) = M(C)/e.

In matroid theory, the first operation is called deletion and the second contraction. In coding theory,
the terms are, respectively, puncturing and shortening.

3.3. Tutte’s representability criterion and homomorphisms

In this subsection we give a necessary and sufficient condition for an R-chain group to be a
P-chain group. The theorem generalizes a result by Tutte [18, Theorem 5.11] (see also Oxley [14,
Proposition 6.5.23]). We start with a few definitions.

Definition 3.18. A pair X1, X2 of cocircuits of a matroid M is modular if

rk(M/S) = 2,

where S = E(M) − (X1 ∪ X2).
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Recall that two flats Y1, Y2 of a matroid M are a modular pair if rkM(Y1) + rkM(Y2) = rkM(Y1 ∪
Y2) + rkM(Y1 ∩ Y2). It is readily checked that X1, X2 is a modular pair of cocircuits if and only if
E(M) − X1, E(M) − X2 is a modular pair of hyperplanes. More generally:

Definition 3.19. A set {X1, . . . , Xk} of distinct cocircuits of a matroid M is a modular set if

rk(M/S) = 2,

where S := E(M) − (X1 ∪ · · · ∪ Xk).

Note that every pair Xi, X j in a modular set is a modular pair, and Xi ∪ X j spans X1 ∪ X2 ∪· · ·∪ Xk .
The main result of this subsection is the following:

Theorem 3.20. Let M be a matroid with ground set E and set C ∗ of cocircuits. Let P = (R, G) be a skew partial
field. For each X ∈ C ∗ , let aX be a G-primitive chain with ‖aX‖ = X. Define the R-chain group

C :=
{ ∑

X∈C ∗
rXaX : rX ∈ R

}
.

Then C is a P-chain group with M = M(C) if and only if there exist, for each modular triple X, X ′, X ′′ ∈ C ∗ ,
elements p, p′, p′′ ∈ G such that

paX + p′aX ′ + p′′aX ′′ = 0. (1)

We adapt the proof by White [22, Proposition 1.5.5] of Tutte’s theorem. First we prove the follow-
ing lemma:

Lemma 3.21. Let M be a matroid with ground set E, let C be defined as in Theorem 3.20, and suppose (1) holds
for each modular triple of cocircuits of M. Let B be a basis of M, and let X1, . . . , Xr be the set of B-fundamental
cocircuits of M. Let A be the matrix whose ith row is aXi . Then C = rowspan(A).

Proof. Note that every cocircuit is a B ′-fundamental cocircuit of some basis B ′ of M . Note also
that any pair of bases is related by a sequence of basis exchanges. Hence it suffices to show that
rowspan(A) contains aX ′′

for any cocircuit X ′′ that can be obtained by a single basis exchange.
Pick e ∈ B , f ∈ E(M) − B such that B ′ := B�{x, y} is a basis, and pick g ∈ B − x. Let X be the

B-fundamental cocircuit containing e, let X ′ be the B-fundamental cocircuit containing g , and let X ′′
be the B ′-fundamental cocircuit containing g .

Claim 3.21.1. X, X ′, X ′′ is a modular triple of cocircuits.

Proof. Consider B ′′ := B − {e, g}. Since B ′′ ⊆ S = E − X ∪ X ′ ∪ X ′′ , it follows that rk(M/S) � 2. Since
{e, g} is independent in M/S (because no circuit intersects a cocircuit in exactly one element), we
must have equality, and the result follows. �

By definition we have that there exist p, p′, p′′ ∈ G such that paX + p′aX ′ + p′′aX ′′ = 0. But then

aX ′′ = −(
p′′)−1

paX − (
p′′)−1

p′aX ′
.

It follows that each aX ′′ ∈ rowspan(A), as desired. �
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Proof of Theorem 3.20. Suppose C is a P-chain group such that M = M(C). Let X, X ′, X ′′ ∈ C ∗ be a
modular triple, and let S := E(M) − (X ∪ X ′ ∪ X ′′). Pick e ∈ X − X ′ , and f ∈ X ′ − X . Since X , X ′ are
cocircuits in M/S , {e, f } is a basis of M/S , again because circuits and cocircuits cannot intersect in
exactly one element. Now X and X ′ are the {e, f }-fundamental cocircuits in M/S , and it follows from
Lemma 3.14 that aX ′′ = paX + p′aX ′

for some p, p′ ∈ R . But aX ′′
e = paD

e , and aD ′′
f = p′aD ′

f , so p, p′ ∈ G ,
and (1) follows.

For the converse, it follows from Lemma 3.21 that, for all X ∈ C ∗ , aX is elementary, and hence
that for every elementary chain c such that ‖c‖ ∈ C ∗ , there is an r ∈ R such that c = ra‖c‖ . Suppose
there is an elementary chain c ∈ C such that ‖c‖ /∈ C ∗ . Clearly ‖c‖ does not contain any X ∈ C ∗ .
Therefore ‖c‖ is coindependent in M . Let B be a basis of M disjoint from ‖c‖, and let X1, . . . , Xr be
the B-fundamental cocircuits of M . Then c = p1aX1 + · · · + praXr for some p1, . . . , pr ∈ R . But, since
ce = 0 for all e ∈ B , p1 = · · · = pr = 0, a contradiction. �

As an illustration of the usefulness of Tutte’s criterion, we consider homomorphisms. As with
commutative partial fields, homomorphisms between chain groups preserve the matroid.

Theorem 3.22. Let P = (R, G) be a skew partial field, and let C be a P-chain group on E. Let P′ = (R ′, G ′) be a
skew partial field, and let ϕ : R → R ′ be a ring homomorphism such that ϕ(G) ⊆ G ′ . Then ϕ(C) is a P′-chain
group, and M(C) = M(ϕ(C)).

Proof. For each cocircuit X of M = M(C), pick a G-primitive chain aX . Then clearly ϕ(aX ) is a
G ′-primitive chain. Moreover, if X, X ′, X ′′ is a modular triple of cocircuits, and p, p′, p′′ ∈ G are such
that paX + p′aX ′ + p′′ A X ′′ = 0, then ϕ(p),ϕ(p′),ϕ(p′′) ∈ G ′ are such that ϕ(p)ϕ(aX ) + ϕ(p′)ϕ(aX ′

) +
ϕ(p′′)ϕ(A X ′′

) = 0. The result now follows from Theorem 3.20. �
3.4. Representation matrices

Our goals in this subsection are twofold. First, we wish to study generator matrices of chain groups
in more detail, as those matrices are typically the objects we work with when studying representa-
tions of specific matroids. As we have seen, they also feature heavily in our proofs.

Second, for commutative partial fields P we currently have two definitions of what it means to be
P-representable: Definitions 2.4 and 3.8. We will show that these definitions are equivalent.

Weak and strong P-matrices can be defined as follows for skew partial fields P:

Definition 3.23. Let P be a skew partial field. An X × E matrix A is a weak P-matrix if rowspan(A)

is a P-chain group. We say that A is nondegenerate if |X | = rk(M(rowspan(A))). We say that A is a
strong P-matrix if [I A] is a weak P-matrix.

Note that, for commutative partial fields, weak and strong P-matrices were defined in Defini-
tion 2.2. We will show below that the new definition generalizes the old one. The following is clear:

Lemma 3.24. Let P= (R, G) be a skew partial field, let A be an X × E weak P-matrix, and let F be an invertible
X × X matrix with entries in R. Then F A is a weak P-matrix.

Again, nondegenerate weak P-matrices can be converted to strong P-matrices:

Lemma 3.25. Let P be a skew partial field, let A be an X × Y nondegenerate weak P-matrix, and let B be a
basis of M(rowspan(A)). Then A[X, B] is invertible.

Proof. For all e ∈ B , let ae be a primitive chain such that ‖ae‖ is the B-fundamental cocircuit
of e. Then ae = f e A for some f e ∈ Rr . Let F be the B × X matrix whose eth row is f e . Then
(F A)[B, B] = I B , and the result follows. �
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y x

x
[

α c

b D

]
→

y
⎡
⎣ α−1 α−1c

−bα−1 D − bα−1c

⎤
⎦

Fig. 1. Pivoting over xy.

We immediately have

Corollary 3.26. Let P = (R, G) be a skew partial field, and let A be an X × Y nondegenerate weak P-matrix.
Then there exists an invertible matrix D over R such that D A is a strong P-matrix.

Although we abandoned determinants, we can recover the next best thing in strong P-matrices:
pivoting.

Definition 3.27. Let A be an X × Y matrix over a ring R , and let x ∈ X , y ∈ Y be such that Axy ∈ R∗ .
Then we define Axy to be the (X − x) ∪ y × (Y − y) ∪ x matrix with entries

(
Axy)

uv =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Axy)
−1 if uv = yx,

(Axy)
−1 Axv if u = y, v 
= x,

−Auy(Axy)
−1 if v = x, u 
= y,

Auv − Auy(Axy)
−1 Axv otherwise.

We say that Axy is obtained from A by pivoting over xy. See also Fig. 1.

Lemma 3.28. Let P be a skew partial field, let A be an X × Y strong P-matrix, and let x ∈ X, y ∈ Y be such
that Axy 
= 0. Then Axy is a strong P-matrix.

Proof. Observe that, if A equals the first matrix in Fig. 1, then [I Axy] can be obtained from [I A] by
left multiplication with

F :=
[ x X ′

y a−1 0 · · ·0

X ′ −ba−1 I X ′

]
, (2)

followed by a column exchange. Exchanging columns clearly preserves weak P-matrices, and F is
invertible. The result now follows from Lemma 3.24. �

While Theorem 3.20 may help to verify that a chain group C is indeed a P-chain group, we need
to know the cocircuits of the (alleged) matroid to be able to apply it. The following proposition
circumvents that step:

Proposition 3.29. Let P = (R, G) be a partial field, let D be an X × Y matrix over R such that every matrix
obtained from D by a sequence of pivots has all entries in G ∪ {0}. Then rowspan([I D]) is a P-chain group.

Proof. Suppose not. Let c ∈ rowspan([I D]) be an elementary, non-primitive chain on X ∪ Y . Let D ′
be an X ′ × Y ′ matrix, obtained from D through pivots, such that s := |X ′ ∩ ‖c‖| is minimal. Clearly
rowspan([I D]) = rowspan([I D ′]), so s > 0. In fact, s � 2, otherwise c is a multiple of a row of [I D ′].
Let x ∈ X ′ ∩ ‖c‖, and let ax be the corresponding row of [I D ′]. Since ‖c‖ is elementary, there is an
element y ∈ ‖ax‖ − ‖c‖. But D ′

xy ∈ G , so the X ′′ × Y ′′ matrix D ′′ := (D ′)xy is such that |X ′′ ∩ ‖c‖| < s,
a contradiction. �
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Fig. 2. The non-Pappus matroid.

Suppose the X ′ × Y ′ matrix D ′ was obtained from the X × Y matrix D by a sequence of pivots.
Then [I D ′] = F [I D], where F = ([I D][X, X ′])−1. It follows that, to check whether a matrix is a
strong P-matrix, we only need to test if multiplication with each choice of F yields a matrix with
entries in G .

The following theorem finalizes the link between commutative and noncommutative P-repre-
sentable matroids.

Theorem 3.30. Let P be a skew partial field, and A an X × Y nondegenerate weak P-matrix. Then B is a basis
of M(rowspan(A)) if and only if A[X, B] is invertible.

Proof. We have already seen that A[X, B] is invertible for every basis B . Suppose the converse does
not hold, so there is a B ⊆ Y such that A[X, B] is invertible, but B is not a basis. Let F be the inverse
of A[X, B], and consider A′ := F A. Since F is invertible, it follows that rowspan(A′) = rowspan(A). Let
C ⊆ B be a circuit, and pick an e ∈ C . Let C ′ := ‖A′[e, E]‖, the support of the eth row of A′ . Clearly
A′[e, E] is elementary, so C ′ is a cocircuit. Then |C ∩ C ′| = 1, a contradiction. Hence B contains no
circuit, so B is independent, and hence a basis. �

It follows that Definition 3.8 is indeed a generalization of Definition 2.4, and that Definition 3.23
is indeed a generalization of Definition 2.2. We can write M[A] := M(rowspan(A)) for a weak
P-matrix A.

Finally, it is possible to incorporate column scaling into the theory of chain groups. The straightfor-
ward proof of the following result is omitted.

Proposition 3.31. Let P = (R, G) be a skew partial field, C a P-chain group on E, and g ∈ G. Define C ′ as
follows:

C ′ := {
c′ ∈ R E : there exists c ∈ C such that c′

f = c f for f ∈ E − e and c′
e = ce g

}
.

Then C ′ is a P-chain group, and M(C) = M(C ′).

3.5. Examples

In this subsection we will try to represent three matroids over a skew partial field. First up is the
non-Pappus matroid, of which a geometric representation is shown in Fig. 2. It is well known that
this matroid is representable over skew fields but not over any commutative field (see Oxley [14,
Example 1.5.15]). A nice representation matrix over a skew field is
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Fig. 3. The Vámos matroid.

⎡
⎢⎣

1 2 3 4 5 6 7 8 9

1 0 0 1 a 1 a ab ab

0 1 0 1 1 b ba b ba

0 0 1 1 1 1 1 1 1

⎤
⎥⎦, (3)

where a and b are such that ab 
= ba. Clearly any skew field F can be viewed as a skew partial field
(F,F∗), so in principle we are done. However, we will describe a slightly more interesting represen-
tation which will be relevant for the next section.

Example 3.32. Consider the ring M(2,Q) of 2×2 matrices over Q, with the usual matrix addition and
multiplication, and the group GL(2,Q) of invertible 2 × 2 matrices (that is, GL(2,Q) = (M(2,Q))∗).
Define the partial field P(2,Q) := (M(2,Q),GL(2,Q)), and consider the following matrix over P(2,Q),
obtained by substituting appropriate 2 × 2 matrices for a and b in (3):

A :=

⎡
⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9[
1 0
0 1

] [
0 0
0 0

] [
0 0
0 0

] [
1 0
0 1

] [
2 2
0 2

] [
1 0
0 1

] [
2 2
0 2

] [
0 6

−6 6

] [
0 6

−6 6

]
[

0 0
0 0

] [
1 0
0 1

] [
0 0
0 0

] [
1 0
0 1

] [
1 0
0 1

] [
3 0

−3 3

] [
6 6

−6 0

] [
3 0

−3 3

] [
6 6

−6 0

]
[

0 0
0 0

] [
0 0
0 0

] [
1 0
0 1

] [
1 0
0 1

] [
1 0
0 1

] [
1 0
0 1

] [
1 0
0 1

] [
1 0
0 1

] [
1 0
0 1

]

⎤
⎥⎥⎥⎥⎦. (4)

Theorem 3.33. Let A be the matrix from Example 3.32. The chain group C := rowspan(A) is a P(2,Q)-chain
group, and M(C) is the non-Pappus matroid.

We omit the proof, which can be based on either Theorem 3.20 or Proposition 3.29, and which is
best carried out by a computer.

Next, we consider the famous Vámos matroid, depicted in Fig. 3. We will show that it is non-
representable even over skew partial fields.

Theorem 3.34. The Vámos matroid, V 8 , is not representable over any skew partial field.

Proof. Suppose that there exists a partial field P = (R, G) over which V 8 has a representation. Let D
be a {1,2,5,7} × {3,4,6,8} matrix over R such that V 8 = M[I D]. Let C := rowspan([I D]). We will
use the fact that, for each circuit X of M , there is a chain d ∈ C⊥ with ‖d‖ = X and c · d = 0 for all
c ∈ C (see Theorem 3.12).

Since {1,2,5,6} is a circuit, it follows that D[7,6] = 0. Since {1,2,7,8} is a circuit, D[5,8] = 0. By
row and column scaling, we may assume that there exist a,b, c,d, e, f , g ∈ G such that
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D =

⎡
⎢⎢⎢⎢⎣

3 4 6 8

1 1 1 1 1

2 e f g 1

5 c d 1 0

7 a b 0 1

⎤
⎥⎥⎥⎥⎦.

Since {5,6,7,8} is a circuit, there exist k, l,m,n ∈ G such that

⎡
⎢⎣

0
0
1
0

⎤
⎥⎦k +

⎡
⎢⎣

0
0
0
1

⎤
⎥⎦ l +

⎡
⎢⎣

1
g
1
0

⎤
⎥⎦m +

⎡
⎢⎣

1
1
0
1

⎤
⎥⎦n =

⎡
⎢⎣

0
0
0
0

⎤
⎥⎦ .

It follows that m = −n, and hence that g = 1. Since {3,4,5,6} is a circuit, there exist p,q, r, s ∈ G
such that

⎡
⎢⎣

0
0
1
0

⎤
⎥⎦ p +

⎡
⎢⎣

1
e
c
a

⎤
⎥⎦q +

⎡
⎢⎣

1
f
d
b

⎤
⎥⎦ r +

⎡
⎢⎣

1
1
1
0

⎤
⎥⎦ s =

⎡
⎢⎣

0
0
0
0

⎤
⎥⎦ .

We may assume q = 1. Then 1+ r + s = 0, and e + f r + s = 0, from which we find r = ( f −1)−1(1−e).
Finally, a + br = 0. Since {3,4,7,8} is a circuit, there exist p′,q′, r′, s′ ∈ G such that

⎡
⎢⎣

0
0
0
1

⎤
⎥⎦ p′ +

⎡
⎢⎣

1
e
c
a

⎤
⎥⎦q′ +

⎡
⎢⎣

1
f
d
b

⎤
⎥⎦ r′ +

⎡
⎢⎣

1
1
0
1

⎤
⎥⎦ s′ =

⎡
⎢⎣

0
0
0
0

⎤
⎥⎦ .

We may assume q′ = 1. Then 1 + r′ + s′ = 0, and e + f r′ + s′ = 0, from which we find r′ = ( f −
1)−1(1 − e). Finally, c + dr′ = 0. Note that r′ = r and s′ = s. Now consider the chain

c :=
[ 1 2 5 7 3 4 6 8

s s 0 0 1 r 0 0
]
.

It is easily checked that c ∈ C⊥ , so ‖c‖ contains a circuit. But {1,2,3,4} is independent in V 8, a con-
tradiction. �

We verified that other notoriously non-representable matroids, such as the non-Desargues config-
uration and some relaxations of P8, remain non-representable in our new setting. Nevertheless, we
were able to find a matroid that is representable over a skew partial field, but not over any skew field.
Hence our notion of representability properly extends the classical notion. We will now construct this
matroid.

For the remainder of this section, let H := {1,−1, i,−i, j,− j,k,−k} be the quaternion group,
that is, the nonabelian group with generators i, j, and k, and relations i2 = j2 = k2 = i jk = −1 and
(−1)2 = 1. The skew field H, the quaternions, is then the set {a + bi + cj +dk: a,b, c,d ∈ R}, equipped
with componentwise addition, and multiplication following from the relations above and distributiv-
ity.

Our construction involves Dowling group geometries, introduced by Dowling [7]. We will not give
a formal definition of Dowling group geometries here, referring to Oxley [14, Section 6.10] for an
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introduction, and to Zaslavsky [26] for a thorough treatment. For our purposes, it suffices to note
that the rank-3 Dowling geometry of H , denoted by Q 3(H), is the matroid M[I A], where A is the
following matrix over H:

A :=
⎡
⎢⎣

a1 a2 a3 a4 a5 a6 a7 a8 b1 b2 · · · b8 c1 · · · c7 c8

e1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 · · · 0 1 · · · k −k

e2 1 −1 i −i j − j k −k −1 −1 · · · −1 0 · · · 0 0

e3 0 0 0 0 0 0 0 0 1 −1 · · · −k −1 · · · −1 −1

⎤
⎥⎦.

(5)

Lemma 3.35. Let P be a skew partial field such that Q 3(H) is representable over P. Then H ⊆ P∗ , with 1
and −1 of H identified with 1 and −1 of P.

Proof. Let P be such that there exists a P-chain group C representing Q 3(H). By column scaling, we
may assume that C = rowspan([I D]), where D is the following matrix:

D :=
⎡
⎢⎣

a1 · · · a8 b1 · · · b8 c1 · · · c8

e1 −1 −1 0 0 z1 z8

e2 x1 x8 −1 −1 0 0

e3 0 · · · 0 y1 · · · y8 −1 · · · −1

⎤
⎥⎦.

Moreover, by scaling the rows of D we may assume x1 = y1 = 1.

Claim 3.35.1. z1 = 1.

Proof. Note that {a1,b1, c1} is a circuit of Q 3(H). By Theorem 3.12, there must be elements
p,q, r ∈ P∗ such that

[−1
1
0

]
p +

[ 0
−1
1

]
q +

[ z1
0

−1

]
r =

[ 0
0
0

]
.

We may choose p = 1, from which it follows that q = r = 1, and hence z1 − 1 = 0. �
Claim 3.35.2. If k, l ∈ {1, . . . ,8} are such that A[e2,ak] = (A[e3,bl])−1 , then xk = y−1

l .

Proof. Since {ak,bl, c1} is a circuit of M , there exist p,q, r ∈ P∗ such that

[−1
xk

0

]
p +

[ 0
−1
yl

]
q +

[ 1
0

−1

]
r =

[ 0
0
0

]
.

We may choose p = 1, from which it follows that r = 1 and q = xk . Hence ylxk − 1 = 0, and the claim
follows. �

Using symmetry and the fact that every element has an inverse, we conclude

Claim 3.35.3. xk = yk = zk for all k ∈ {1, . . . ,8}.
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Next,

Claim 3.35.4. Let k, l,m ∈ {1, . . . ,8} be such that A[e1, cm]A[e3,bl]A[e2,ak] = 1. Then xmxlxk = 1.

Proof. Since {ak,bl, cm} is a circuit of M , there exist p,q, r ∈ P∗ such that

[−1
xk
0

]
p +

[ 0
−1
xl

]
q +

[ xm

0
−1

]
r =

[0
0
0

]
.

We may choose p = 1, from which it follows that q = xk . From this, in turn, it follows that r = xlxk .
Hence xmxlxk − 1 = 0, and the claim follows. �

Now {x1, . . . , x8} is isomorphic to H , as desired. Finally,

Claim 3.35.5. x2 = −1.

Proof. Note that X := E(Q 3(H))−{e3,a1} is a cocircuit of Q 3(H). Hence rowspan([I D]) must contain
a chain whose support equals X . Let c be the sum of the first two rows of [I D]. Then ‖c‖ = X , so
c must be a P∗-multiple of a P∗-primitive chain c′ . But since ce1 = 1 ∈ P∗ , we may pick c′ = c. Now
ca2 = x2 − 1 ∈ P∗ . It follows that

x2
2 − 1 = 0,

(x2 − 1)(x2 + 1) = 0,

x2 + 1 = 0,

as desired. �
This concludes the proof. �
A second ingredient of our matroid is the ternary Reid geometry, R9 (see Oxley [14, p. 654]), which

has the following representation over GF(3):

⎡
⎢⎣

1 2 3 4 5 6 7 8 9

1 0 0 1 1 1 0 0 1

0 1 0 1 1 2 1 1 0

0 0 1 1 0 0 1 2 1

⎤
⎥⎦.

Lemma 3.36. Let P= (R, G) be a skew partial field such that R9 is representable over P. Then R contains GF(3)

as a subring.

Proof. Let P be such that there exists a P-chain group C representing Q 3(H). By row and column
scaling, we may assume that C = rowspan([I D]), where D is the following matrix:

D :=
⎡
⎢⎣

4 5 6 7 8 9

1 1 1 1 0 0 1

2 1 v w 1 1 0

3 1 0 0 x y z

⎤
⎥⎦.
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Claim 3.36.1. v = x = z = 1.

Proof. Note that {3,4,5} is a circuit of R9. By Theorem 3.12, there exist p,q, r ∈ P∗ such that

[ 0
0
1

]
p +

[ 1
1
1

]
q +

[ 1
v
0

]
r =

[ 0
0
0

]
.

It follows that q = −r, and hence 1 − v = 0. Similarly x = z = 1. �
Claim 3.36.2. w = y = −1.

Proof. Since {6,7,9} is a circuit of R9, there exist p,q, r ∈ P∗ such that

[ 1
w
0

]
p +

[ 0
1
1

]
q +

[ 1
0
1

]
r =

[ 0
0
0

]
.

We may choose p = 1. It follows that r = −1, and from that it follows that q = 1. But now w + 1 = 0,
as desired. Similarly y = −1. �

Finally, since {4,6,8} is a circuit, there exist p,q, r ∈ P∗ such that

[ 1
1
1

]
p +

[ 1
−1
0

]
q +

[ 0
1

−1

]
r =

[ 0
0
0

]
.

We may choose p = 1. It follows that q = −1 and r = 1. But then 1 + 1 + 1 = 0, and the result
follows. �

Combining these two lemmas we find:

Theorem 3.37. Let M := R9 ⊕ Q 3(H). Then M is representable over a skew partial field, but over no skew
field.

Proof. Consider the ring R3 := GF(3)[i, j,k], where i2 = j2 = k2 = i jk = −1, and the skew partial field
P3 := (R3, R∗

3). It can be checked, using either Theorem 3.20 or Proposition 3.29, that the matrix [I A],
where A is the matrix from (5) interpreted as a matrix over R3, is a P3-matrix. Moreover, the direct
sum of two P-chain groups is clearly a P-chain group. This proves the first half of the theorem.

For the second half, assume C is a P-chain group for some skew partial field P = (R, G), such that
M = M(C). By Lemmas 3.35 and 3.36, we conclude that R contains R3 as subring. But (1 + i + j)(1 −
i − j) = 0, so R3 has zero divisors. Hence R is not a skew field. The result follows. �

An attractive feature of this example is that the skew partial field P3 is finite. Contrast this with
Wedderburn’s theorem that every finite skew field is commutative.

Our example is quite large and not connected. Connectivity is easily repaired by the operation of
truncation. An interesting question is what the smallest matroid would be that is representable over
a skew partial field but not over any skew field.

4. Multilinear representations

An n-multilinear representation of a matroid M is a representation of the polymatroid with rank
function n · rkM . We will make this notion more precise. First some notation. For a vector space K , we
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denote by Gr(n, K ) the collection of all n-dimensional subspaces of K . Note that this object is called
a Grassmannian. It has been studied extensively, but here it is merely used as convenient notation.

While the main interest in multilinear representations seems to be in the case that K is a finite-
dimensional vector space over a (commutative) field, we will state our results for vector spaces over
skew fields, since the additional effort is negligible. It will be convenient to treat the vector spaces in
this section as right vector spaces; that is, we treat those vectors as column vectors, rather than the
row vectors used for chain groups. Analogously with Definition 3.15, if A is a matrix over a ring R
with n columns, then colspan(A) := {Ax: x ∈ Rn}. Finally, recall that, for subspaces V , W of a vector
space K we have V + W := {x + y: x ∈ V , y ∈ W }, which is again a subspace.

Definition 4.1. Let M be a rank-r matroid, n a positive integer, and F a skew field. An n-multilinear
representation of M is a function V : E(M) → Gr(n,Fnr) that assigns, to each element e ∈ E(M), an
n-dimensional subspace V (e) of the right vector space Fnr , such that for all X ⊆ E(M),

dim

(∑
e∈X

V (e)

)
= n rkM(X).

Example 4.2. We find a 2-multilinear representation over Q of the non-Pappus matroid (Fig. 2). Let A
be the following matrix over Q:

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 1 0 2 2 1 0 2 2 0 6 0 6
0 1 0 0 0 0 0 1 0 2 0 1 0 2 −6 6 −6 6
0 0 1 0 0 0 1 0 1 0 3 0 6 6 3 0 6 6
0 0 0 1 0 0 0 1 0 1 −3 3 −6 0 −3 3 −6 0
0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎦ . (6)

Let V : {1, . . . ,9} → Gr(2,Q6) be defined by V (i) := colspan(A[{1, . . . ,6}, {2i − 1,2i}]). Then V is
a 2-linear representation of the non-Pappus matroid over Q. This claim is easily verified using a
computer.

The observant reader will have noticed the similarity between the matrices in Examples 3.32
and 4.2. This is not by accident. In fact, it illustrates the main point of this section. For each inte-
ger n and field F, we define the following skew partial field:

P(n,F) := (
M(n,F),GL(n,F)

)
.

Theorem 4.3. Let F be a skew field, and n ∈ N. A matroid M has an n-multilinear representation over F if and
only if M is representable over the skew partial field P(n,F).

Our proof is constructive, and shows in fact that there is a bijection between weak P(n,F)-
matrices, and coordinatizations of n-multilinear representations of M . We make the following defi-
nitions:

Definition 4.4. Let A be an r × s matrix with entries from M(n,F). The unwrapping of A, denoted
by zn(A), is the rn × sn matrix D over F such that, for all a ∈ {1, . . . , r}, b ∈ {1, . . . , s}, and c,d ∈
{1, . . . ,n}, we have D[n(a − 1) + c,n(b − 1) + d] equals the (c,d)th entry of the matrix in A[a,b].
Conversely, we say that A is the wrapping of order n of D , denoted by z−1

n (D).

In other words, we can partition zn(A) into rs blocks of size n × n, such that the entries of the
(a,b)th block equal those of the matrix in A[a,b]. With this terminology, the matrix in (6) is the
unwrapping of the matrix in (4). We will use the following properties:
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Lemma 4.5. Let A1 , A2 be r × s matrices over M(n,F), and let A3 be an s × t matrix over M(n,F). The
following hold:

(i) zn(A1 + A2) = zn(A1) + zn(A2);
(ii) zn(A1 A3) = zn(A1)zn(A3);

(iii) If A1 is square, then A1 is invertible if and only if zn(A1) is invertible.

We omit the elementary proofs, which all boil down to the elementary fact that addition and mul-
tiplication of matrices can be carried out in a blockwise fashion. We can now prove the main result:

Proof of Theorem 4.3. Let F be a skew field, let n ∈ N, and let M be a matroid with elements E =
{1, . . . , s}. First, let A be an r × s weak P(n,F)-matrix such that M = M[A]. Let D = zn(A). Define the
map V D : E(M) → Fnr by

V D(e) := colspan
(

D
[{1, . . . ,nr},{n(e − 1) + 1, . . . ,n(e − 1) + n

}])
.

Claim 4.5.1. V D is an n-multilinear representation of M over F.

Proof. Pick a set X ⊆ E . We have to show that

dim

(∑
e∈X

V D(e)

)
= n rkM(X). (7)

Note that if we replace D by H D for some matrix H ∈ GL(nr,F), then

dim

(∑
e∈X

V D(e)

)
= dim

(∑
e∈X

V H D(e)

)
.

Let I be a maximal independent set contained in X , and let B be a basis of M containing I . Let F
be the r × r matrix over P(n,F) such that (F A)[{1, . . . , r}, B] is the identity matrix. By Lemma 3.25,
F exists. Define A′ := F A, and index the rows of A′ by B , such that A′[b,b] = 1 (that is, the n × n
identity matrix) for all b ∈ B . Let H := zn(F ), and D ′ := H D . By Lemma 4.5, D ′ = z(F A). Since no
pivot can enlarge the intersection of B with X , A′[b, x] = 0 (that is, the n × n all-zero matrix) for all
b ∈ B − I and all x ∈ X − I . These entries correspond to blocks of zeroes in D ′ , and it follows that

dim

(∑
e∈X

V D ′(e)

)
= dim

(∑
e∈I

V D ′(e)

)
= n|I|,

as desired. �
For the converse, let V be an n-multilinear representation of M . Let D be an rn × sn matrix

over F such that the columns indexed by {n(e − 1) + 1, . . . ,n(e − 1) + n} contain a basis of V (e). Let
A := z−1

n (D).

Claim 4.5.2. A is a weak P(n,F)-matrix.

Proof. From Lemma 4.5 it follows that z−1
n defines a bijection between GL(nr,F) and GL(r, M(n,F)).

A submatrix of D corresponding to a set B ⊆ E of size r is invertible if and only if it has full column
rank, if and only if B is a basis. Hence A[{1, . . . , r}, B] is invertible if and only if B is a basis of M . It
now follows from Proposition 3.29 that A is a weak P-matrix. Clearly M = M[A]. �

This completes the proof. �
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5. The matrix tree theorem and quaternionic unimodular matroids

In this section we will generalize Kirchhoff ’s famous formula for counting the number of spanning
trees in a graph to a class of matroids called quaternionic unimodular. This is not unprecedented: it
is well known that the number of bases of a regular matroid can be counted likewise, and the same
holds for sixth-roots-of-unity (SRU) matroids [13]. The common proof of Kirchhoff ’s formula goes
through the Cauchy–Binet formula, an identity involving determinants. Our main contribution in this
section is a method to delay the introduction of determinants, so that we can work with skew fields.
The price we pay is that we must restrict our attention to a special case of the Cauchy–Binet formula.

Let p = a + bi + cj + dk ∈ H. The conjugate of p is p = a − bi − cj − dk, and the norm of p is
the nonnegative real number |p| such that |p|2 = pp = a2 + b2 + c2 + d2. Now define SH := {p ∈ H:
|p| = 1}, and let the quaternionic unimodular partial field be QU := (H, SH). We say a matroid M is
quaternionic unimodular (QU) if there exists a QU-chain group C such that M = M(C).

The sixth-roots-of-unity partial field is S := (C, {ζ i: i ∈ {1, . . . ,6}}), where ζ is a primitive sixth
root of unity. The class of QU matroids clearly contains the SRU matroids, and hence the regular
matroids. Moreover, the class properly extends both classes, since U2,6 has a QU representation but
no SRU representation. To find this representation, pick elements p,q, r ∈ H such that |s − t| = 1 for
all distinct s, t ∈ {0,1, p,q, r}. Then the following matrix is a QU-matrix.

[
1 0 1 1 1 1
0 1 1 p q r

]
.

We will use the well-known result that the map ϕ : H→ M(2,C) defined by

ϕ(a + bi + cj + dk) :=
[

a + bi c + di
−c + di a − bi

]
(8)

is a ring homomorphism. Denote the conjugate transpose of a matrix A by A†. It is easy to check
that, if p is a quaternion, then ϕ(p)† = ϕ(p). Moreover, |p| = √

det(ϕ(p)). Recall the unwrapping
function zn from the previous section. We define

δ : M(r,H) →R

by

δ(D) :=
√∣∣det

(
z2

(
ϕ(D)

))∣∣.
Theorem 5.1. Let r, s be positive integers with s � r, let X , E be finite sets with |X | = r and |E| = s, and let A
be an X × E matrix over H. Then the following equality holds:

δ
(

A A†) =
∑

B⊆E: |B|=r

δ
(

A[X, B]A[X, B]†). (9)

For illustrative purposes we mention that the classical Cauchy–Binet formula states that, if r, s, X ,
and E are as in the theorem, and A and D are X × E matrices over a commutative ring, then

det
(

ADT ) =
∑

B⊆E: |B|=r

det
(

A[X, B]D[X, B]T )
.

We use the following properties of δ in our proof:
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Lemma 5.2. Let δ be the function defined in Theorem 5.1, and let A, A1 , A2 be r × r matrices over H. Then the
following hold:

(i) δ(A1 A2) = δ(A1)δ(A2);
(ii) δ(A†) = δ(A);

(iii) If A = [a] for some a ∈H, then δ(A) = |a|;
(iv) If A[{1, . . . , r − 1}, r] contains only zeroes, then

δ(A) = |Arr |δ
(

A
[{1, . . . , r − 1}, {1, . . . , r − 1}]);

(v) If A is a permutation matrix, then δ(A) = 1;
(vi) If A is a transvection matrix, then δ(A) = 1.

Recall that a permutation matrix is a matrix with exactly one 1 in each row and column, and zeroes
elsewhere, whereas a transvection matrix is a matrix with ones on the diagonal, and exactly one off-
diagonal entry not equal to zero. Multiplication with such matrices from the left corresponds to row
operations. The proof of the lemma is elementary; we omit it. By combining this lemma with the
definition of a pivot, Definition 3.27, we obtain the following

Corollary 5.3. Let X , Y be a finite sets of size r, let A be an X × Y matrix over H, and let x ∈ X, y ∈ Y be such
that Axy 
= 0. Then

δ(A) = |Axy|δ
(

Axy[X − x, Y − y]).
Proof. Consider the matrix F from Eq. (2). Then the column of F A indexed by y has a 1 in position
(y, y) and zeroes elsewhere. Hence Lemma 5.2 implies δ(F A) = δ((F A)[X −x, Y − y]). But (F A)[X −x,
Y − y] = Axy[X − x, Y − y]. Therefore

δ(A) = δ(F A)/δ(F ) = δ(Axy)δ
(

Axy[X − x, Y − y]),
as stated. �
Proof of Theorem 5.1. We prove the theorem by induction on r + s, the cases where r = 1 or r = s
being straightforward. We may assume X = {1, . . . , r} and E = {1, . . . , s}. By Lemma 5.2, we can carry
out row operations on A without changing the result. Hence we may assume

A[X − r, s] = 0.

Further row operations (that is, simultaneous row and column operations on A A†) allow us to as-
sume

Q := A A† is a diagonal matrix. (10)

Let a := Ars .

Claim 5.1.1. If s ∈ B ⊆ E and |B| = r, then

δ
(

A[X, B]A[X, B]†) = (aa)δ
(

A[X − r, B − s]A[X − r, B − s]†).



R.A. Pendavingh, S.H.M. van Zwam / Advances in Applied Mathematics 50 (2013) 201–227 221
Proof.

δ
(

A[X, B]A[X, B]†) = δ
(

A[X, B])δ(A[X, B]†)
= δ(a)δ

(
A[X − r, B − s])δ(a)δ

(
A[X − r, B − s]†)

= (aa)δ
(

A[X − r, B − s]A[X − r, B − s]†).
All equalities follow directly from Lemma 5.2. �

Now let Q ′ := A[X, E − s]A[X, E − s]†, and let q := Q rr .

Claim 5.1.2. δ(A[X, E − s]A[X, E − s]†) = (q − aa)δ(Q ′).

Proof. Note that Q ′
rr = Q rr − aa. Moreover, since A[X − r, e] = 0, all other entries of Q ′ are equal to

those in Q . The result then follows from Lemma 5.2. �
Now we deduce

∑
B⊆E: |B|=r

δ
(

A[X, B]A[X, B]†) (11)

=
∑

B⊆E: |B|=r, s/∈B

δ
(

A[X, B]A[X, B]†)

+
∑

B⊆E: |B|=r, s∈B

δ
(

A[X, B]A[X, B]†) (12)

=
∑

B⊆E: |B|=r, s/∈B

δ
(

A[X, B]A[X, B]†)

+
∑

B⊆E: |B|=r, s∈B

(aa)δ
(

A[X − r, B − s]A[X − r, B − s]†) (13)

= δ
(

A[X, E − s]A[X, E − s]†)
+ (aa)δ

(
A[X − r, E − s]A[X − r, E − s]†) (14)

= (q − aa)δ
(

Q ′) + (aa)δ
(

Q ′) (15)

= δ
(

A A†). (16)

Here (12) is obvious, and (13) uses Claim 5.1.1. After that, (14) follows from the induction hypothesis,
(15) follows from Claim 5.1.2, and (16) is obvious. �

We conclude

Corollary 5.4. Let A be a strong QU-matrix. Then δ(A A†) equals the number of bases of M[A].

Proof. Let X , E be finite sets with |E| � |X |, and let A be a strong X × E QU-matrix.

Claim 5.4.1. Let B ⊆ E with |B| = |X |. Then

δ
(

A[X, B]) =
{

1 if B basis of M[A];
0 otherwise.
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Proof. Note that A[X, B] is invertible if and only if z2(ϕ(A[X, B])) is invertible. It follows from Theo-
rem 3.30 that δ(A[X, B]) = 0 if B is not a basis. Now let B be a basis, and pick i ∈ X , e ∈ B such that
a := Aie 
= 0. Then |a| = 1. Define X ′ := X − i, define b := A[X ′, e], and define

Fe :=
[ i X ′

e a−1 0 · · · 0

X ′ −ba−1 I X ′

]
.

From Lemma 5.2 we conclude δ(Fe) = |a−1| = 1. But the column indexed by i in (Fe A)[X, B]
has exactly one nonzero entry, which is equal to 1. It follows that there exists a matrix F with
δ(F ) = 1, such that (F A)[X, B] is the identity matrix. But then δ(F A[X, B]) = δ(A[X, B]) = 1, as de-
sired. �

The result follows immediately from Claim 5.4.1 and Theorem 5.1. �
For a more detailed result we define

P A := A†(A A†)−1
A

for every matrix over the quaternions of full row rank. This matrix has many attractive properties,
such as the following:

Lemma 5.5. Let A be a matrix over the quaternions of full row rank r, and let F be an invertible r × r matrix
over the quaternions. Then

P F A = P A .

Proof.

P F A = (F A)†(F A(F A)†)−1
F A

= A† F †(F A A† F †)−1
F A

= A† F †(F †)−1(
A A†)−1

F −1 F A

= P A . �
It follows that P A is an invariant of rowspan(A). In fact, if we may choose A such that its rows

are orthonormal, then qP A is the orthogonal projection of row vector q onto the row space of A. For
this reason, we will refer to the projection matrix PC of a chain group C over H.

The following lemma relates contraction in the chain group (cf. Definition 3.16) to pivoting in the
projection matrix (cf. Definition 3.27):

Lemma 5.6. Let C be a QU-chain group on E, and let e ∈ E, not a loop of M(C). Then P C/e = (PC )ee[E − e,
E − e].

Proof. Let X := {1, . . . , r}, and let A be an X × E weak QU-matrix such that C = rowspan(A). Since
the column A[X, e] contains a nonzero entry, we may assume, by row operations, that Are = 1, and
A[X −r, e] = 0. Moreover, by additional row operations we may assume that A A† is a diagonal matrix.
For ease of notation, define a := A[r, E] and A′ := A[X −r, E −e]. Note that rowspan(A′) = C/e. Finally,
let Q := PC , and let Q ′ := PC/e .
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Let d1, . . . ,dr be the diagonal entries of the diagonal matrix (A A†)−1 (so d1, . . . ,dr−1 are the
diagonal entries of (A′ A′ †)−1). By definition,

Q xy =
r∑

i=1

Aixdi Aiy .

In particular,

Q xe = Arxdr Are = Arxdr;
Q ey = Aredr Ary = dr Ary;
Q ee = dr .

Now it follows from Definition 3.27 that, for x, y ∈ E − e,

(
Q ee)

xy = Q xy − Q xe Q −1
ee Q ey

=
r∑

i=1

Aixdi Aiy − Arxdrd−1
r dr Ary

=
r−1∑
i=1

Aixdi Aiy .

Hence Q ee[E − e, E − e] = Q ′ , as claimed. �
Our final result is the following refinement of Corollary 5.4.

Theorem 5.7. Let C be a QU-chain group on E, and let F ⊆ E. Then

δ
(

P C [F , F ]) = |{B ⊆ E: B basis of M(C) and F ⊆ B}|
|{B ⊆ E: B basis of M(C)}| .

This result was proven for regular and SRU matroids by Lyons [13], who used the exterior algebra
in his proof (see Whitney [23, Chapter I] for one possible introduction). For graphs and |F | = 1, the
result dates back to Kirchhoff [11], whereas the case |F | = 2 was settled by Brooks, Smith, Stone, and
Tutte [2] in their work on squaring the square. Burton and Pemantle [4] showed the general formula
for graphs.

Proof. Let C be a QU-chain group on E , and let F ⊆ E . We will prove the result by induction on |F |.
Since the determinant of the empty matrix equals 1, the case F = ∅ is trivial. If an element e ∈ F is a
loop of M(C), then PC [F , F ] contains an all-zero row (and column), and hence δ(P C [F , F ]) = 0.

Now pick any e ∈ F . Let A be a weak QU-matrix such that C = rowspan(A). By the above the col-
umn A[X, e] contains a nonzero. By row operations we may assume that Are = 1, an A[X − r, e] = 0.
Moreover, by additional row operations we may assume that A A† is a diagonal matrix. For ease of no-
tation, define a := A[r, E] and A′ := A[X − r, E − e]. Then rowspan(A′) = C/e. Moreover, let Q := PC ,
and let Q ′ := PC/e . Finally, let F ′ := F − e. For a row vector v we write |v| := δ(v v†).

Claim 5.7.1. |a| = δ(A A†)/δ(A′ A′ †).
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Proof. By our assumptions we have that

A A† =

⎡
⎢⎢⎢⎢⎣

X ′ r

0

X ′ A′ A′ †
...

0

r 0 · · · 0 |a|

⎤
⎥⎥⎥⎥⎦.

The claim follows directly from Lemma 5.2. �
Note that Q ee = |a|−1.

Claim 5.7.2. δ(Q [F , F ]) = |Q ee|δ(Q ′[F ′, F ′]).

Proof. By Corollary 5.3, we have δ(Q [F , F ]) = |Q ee|δ(Q ee[F ′, F ′]). By Lemma 5.6, Q ee[E − e, E −
e] = Q ′ , and the claim follows. �

By induction, we have

δ
(

Q ′[F ′, F ′]) = |{B ′ ⊆ E: B ′ basis of M(C ′) and F ′ ⊆ B ′}|
|{B ′ ⊆ E: B ′ basis of M(C ′)}| . (17)

Note that the denominator equals δ(A′ A′ †), by Corollary 5.4. Now

δ
(

Q [F , F ]) = |Q ee|δ
(

Q ′[F ′, F ′]) (18)

= δ(A′ A′ †)

δ(A A†)
δ
(

Q ′[F ′, F ′]) (19)

= |{B ′ ⊆ E: B ′ basis of M(C ′) and F ′ ⊆ B ′}|
δ(A A†)

(20)

= |{B ⊆ E: B basis of M(C) and F ⊆ B}|
|{B ⊆ E: B basis of M(C)}| , (21)

where (18) follows from Claim 5.7.2, and (19) follows from Claim 5.7.1. After that, (20) follows
from (17), and (21) follows since B ′ is a basis of M(C ′) if and only if B ′ ∪ e is a basis of M(C). �
6. Open problems

We conclude the paper with a number of open problems. The first few concern skew partial fields
in general; the remainder concern quaternionic unimodular matroids.

In Theorem 3.37 we have shown that the class of matroids representable over skew partial fields is
strictly larger than the class of matroids representable over a skew field. Since all examples we have
seen can be converted to multilinear representations, we propose:

Conjecture 6.1. For every skew partial field P there exists a partial-field homomorphism P→ P(n,F) for some
integer n and field F.

In other words: a matroid is representable over a skew partial field if and only if it has a multilin-
ear representation over some field.
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A useful tool to prove that a matroid is not representable over a skew field is Ingleton’s In-
equality [10]. For a clean formulation, due to Geelen (personal communication), we use the local
connectivity function �M(X, Y ) = rkM(X) + rkM(Y ) − rkM(X ∪ Y ).

Theorem 6.2. (See Ingleton [10].) Let M be a matroid representable over some skew field, and let A, B, C , D
be pairwise disjoint subsets of E(M). Then

�M(A, B) + �M(C, D) � �M/C (A, B) + �M/D(A, B).

Note: Ingleton did not require the sets to be disjoint, but one can always replace elements by
parallel pairs to accomplish this. Ingleton’s proof generalizes to multilinear representations, so the
following conjecture holds if Conjecture 6.1 holds:

Conjecture 6.3. Ingleton’s Inequality is satisfied by all quadruples of pairwise disjoint subsets of a matroid
representable over a skew partial field.

Since we do not have a vector space at our disposal, Ingleton’s proof does not generalize to skew
partial fields. For the same reason, the following question is unsolved:

Question 6.4. Are all matroids that are representable over a skew partial field algebraic?

In Lemma 3.35 we used a particular Dowling geometry. For a general finite group G we let Q r(G)

denote the rank-r Dowling geometry of G (see Oxley [14, Section 6.10]). Dowling geometries are
matroids associated with groups, and if the rank is at least three, the group can be recovered from
the matroid structure. The next question was raised by Semple and Whittle [16] for abelian groups:

Problem 6.5. What are necessary and sufficient conditions on a group G so that Q r(G) is repre-
sentable over some skew partial field?

Semple and Whittle found, using arguments much like ours in Section 3.5, that if P = (R, G ′) is
such a partial field, then G is a subgroup of G ′ , and 1 − g ∈ G ′ for all g ∈ G − {1}. These observations
extend to skew partial fields and general groups. From this they concluded that it is necessary that
the group has at most one element of order two. This too is true for general groups: from the facts
that 1 − t is invertible and t2 = 1, we deduce that t + 1 = 0, as in Claim 3.35.5 above. Semple and
Whittle claimed that this condition would be sufficient. Unfortunately this is false, which can be
deduced from the following two facts from commutative algebra, the first of which was used in the
proof of Proposition 2.3.

(i) Every commutative ring R has a maximal ideal I . For such an ideal, R/I is a field.
(ii) Every finite subgroup of the multiplicative group of a field is cyclic.

The problem in Semple and Whittle’s purported proof seems to be that they could not guarantee that
the map from their axiomatically defined group with partial addition to its group ring was injective.
Since both Dowling geometries and representable matroids are fundamental objects in matroid theory
research, we hope that someone will come up with a satisfactory answer to Problem 6.5.

We conclude this section with some questions regarding quaternionic unimodular matroids. An
obvious first question is the following:

Question 6.6. What are the excluded minors for the class of QU matroids?

In fact, we do not know if this list will be finite. To get more insight in the representations of QU
matroids, we consider the set of fundamental elements of a skew partial field:

F (P) := {p ∈ P: 1 − p ∈ P}.
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For commutative partial fields we can represent all P-representable matroids over the sub-partial
field with group generated by −1 and F (P). This result generalizes to skew partial fields. For the
SRU partial field, F (S) = {1, ζ, ζ−1}. However, for the skew partial field QU this set is infinite: it
consists of 1 and all quaternions a + bi + cj + dk with a = 1

2 and a2 + b2 + c2 + d2 = 1.
We say that x is a cross ratio of a chain group C if there exist an elementary chain c ∈ C and an

elementary cochain d ∈ C∗ such that |‖c‖∩‖d‖| = 3, and for some e, f ∈ ‖c‖∩‖d‖ we have x = − ced f
c f de

.

Each cross ratio of a chain group C over P is necessarily in F (P).

Question 6.7. Is there a finite set of fundamental elements F such that all QU matroids have a repre-
sentation whose cross ratios are contained in F ?

A more concrete conjecture is the following:

Conjecture 6.8. Let p,q, r ∈ H be such that |s − t| = 1 for all distinct s, t ∈ {0,1, p,q, r}. If M is a QU matroid,
then M is representable over the skew partial field (H, 〈−1, p,q, r〉).

An important motivation to study quaternionic unimodular matroids is their conjectured relation
with matroids having the Half-Plane Property (HPP). The basis generating polynomial of a matroid M is∑

B∈B(M)(
∏

e∈B ze). A matroid M is HPP if this polynomial is nonzero whenever Re(ze) > 0 for all
e ∈ E .

David G. Wagner conjectured the following.

Conjecture 6.9. All QU matroids have the Half-Plane Property.

Unfortunately our definition of δ prevents a straightforward adaptation of the proof of the corre-
sponding statement for SRU matroids [6].
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