5,114 research outputs found

    Upper tails and independence polynomials in random graphs

    Full text link
    The upper tail problem in the Erd\H{o}s--R\'enyi random graph GGn,pG\sim\mathcal{G}_{n,p} asks to estimate the probability that the number of copies of a graph HH in GG exceeds its expectation by a factor 1+δ1+\delta. Chatterjee and Dembo showed that in the sparse regime of p0p\to 0 as nn\to\infty with pnαp \geq n^{-\alpha} for an explicit α=αH>0\alpha=\alpha_H>0, this problem reduces to a natural variational problem on weighted graphs, which was thereafter asymptotically solved by two of the authors in the case where HH is a clique. Here we extend the latter work to any fixed graph HH and determine a function cH(δ)c_H(\delta) such that, for pp as above and any fixed δ>0\delta>0, the upper tail probability is exp[(cH(δ)+o(1))n2pΔlog(1/p)]\exp[-(c_H(\delta)+o(1))n^2 p^\Delta \log(1/p)], where Δ\Delta is the maximum degree of HH. As it turns out, the leading order constant in the large deviation rate function, cH(δ)c_H(\delta), is governed by the independence polynomial of HH, defined as PH(x)=iH(k)xkP_H(x)=\sum i_H(k) x^k where iH(k)i_H(k) is the number of independent sets of size kk in HH. For instance, if HH is a regular graph on mm vertices, then cH(δ)c_H(\delta) is the minimum between 12δ2/m\frac12 \delta^{2/m} and the unique positive solution of PH(x)=1+δP_H(x) = 1+\delta

    Counting Euler Tours in Undirected Bounded Treewidth Graphs

    Get PDF
    We show that counting Euler tours in undirected bounded tree-width graphs is tractable even in parallel - by proving a #SAC1\#SAC^1 upper bound. This is in stark contrast to #P-completeness of the same problem in general graphs. Our main technical contribution is to show how (an instance of) dynamic programming on bounded \emph{clique-width} graphs can be performed efficiently in parallel. Thus we show that the sequential result of Espelage, Gurski and Wanke for efficiently computing Hamiltonian paths in bounded clique-width graphs can be adapted in the parallel setting to count the number of Hamiltonian paths which in turn is a tool for counting the number of Euler tours in bounded tree-width graphs. Our technique also yields parallel algorithms for counting longest paths and bipartite perfect matchings in bounded-clique width graphs. While establishing that counting Euler tours in bounded tree-width graphs can be computed by non-uniform monotone arithmetic circuits of polynomial degree (which characterize #SAC1\#SAC^1) is relatively easy, establishing a uniform #SAC1\#SAC^1 bound needs a careful use of polynomial interpolation.Comment: 17 pages; There was an error in the proof of the GapL upper bound claimed in the previous version which has been subsequently remove

    Another construction of edge-regular graphs with regular cliques

    Full text link
    We exhibit a new construction of edge-regular graphs with regular cliques that are not strongly regular. The infinite family of graphs resulting from this construction includes an edge-regular graph with parameters (24,8,2)(24,8,2). We also show that edge-regular graphs with 11-regular cliques that are not strongly regular must have at least 2424 vertices.Comment: 7 page

    The existence of designs via iterative absorption: hypergraph FF-designs for arbitrary FF

    Full text link
    We solve the existence problem for FF-designs for arbitrary rr-uniform hypergraphs~FF. This implies that given any rr-uniform hypergraph~FF, the trivially necessary divisibility conditions are sufficient to guarantee a decomposition of any sufficiently large complete rr-uniform hypergraph into edge-disjoint copies of~FF, which answers a question asked e.g.~by Keevash. The graph case r=2r=2 was proved by Wilson in 1975 and forms one of the cornerstones of design theory. The case when~FF is complete corresponds to the existence of block designs, a problem going back to the 19th century, which was recently settled by Keevash. In particular, our argument provides a new proof of the existence of block designs, based on iterative absorption (which employs purely probabilistic and combinatorial methods). Our main result concerns decompositions of hypergraphs whose clique distribution fulfills certain regularity constraints. Our argument allows us to employ a `regularity boosting' process which frequently enables us to satisfy these constraints even if the clique distribution of the original hypergraph does not satisfy them. This enables us to go significantly beyond the setting of quasirandom hypergraphs considered by Keevash. In particular, we obtain a resilience version and a decomposition result for hypergraphs of large minimum degree.Comment: This version combines the two manuscripts `The existence of designs via iterative absorption' (arXiv:1611.06827v1) and the subsequent `Hypergraph F-designs for arbitrary F' (arXiv:1706.01800) into a single paper, which will appear in the Memoirs of the AM
    corecore