9,708 research outputs found

    Syntaksin kuvaaminen käyttäen tähdettömiä säännöllisiä lausekkeita

    Get PDF
    Has been cited by: 1. Nathan Vaillette. Dissertation. 2004 2. András Kornai. Mathematical Linguistics. Springer Verlag. 2008. 3. Mans Hulden, Regular Expressions and Predicate Logic in Finite-State Language Processing, Proceeding of the 2009 conference on Finite-State Methods and Natural Language Processing: Post-proceedings of the 7th International Workshop FSMNLP 2008, p.82-97, July 11, 2009 Proceeding volume: 10Koskenniemen Äärellistilaisen leikkauskieliopin (FSIG) lauseopilliset rajoitteet ovat loogisesti vähemmän kompleksisia kuin mihin niissä käytetty formalismi vittaisi. Osoittautuukin että vaikka Voutilaisen (1994) englannin kielelle laatima FSIG-kuvaus käyttää useita säännöllisten lausekkeiden laajennuksia, kieliopin kuvaus kokonaisuutenaan palautuu äärelliseen yhdistelmään unionia, komplementtia ja peräkkäinasettelua. Tämä on oleellinen parannus ENGFSIG:n descriptiiviseen kompleksisuuteen. Tulos avaa ovia FSIG-kuvauksen loogisten ominaisuuksien syvemmälle analyysille ja FSIG kuvausten mahdolliselle optimoinnillle. Todistus sisältää uuden kaavan, joka kääntää Koskenniemien rajoiteoperaation ilman markkerimerkkejä.Syntactic constraints in Koskenniemi’s Finite-State Intersection Grammar (FSIG) are logically less complex than their formalism (Koskenniemi et al., 1992) would suggest: It turns out that although the constraints in Voutilainen’s (1994) FSIG description of English make use of several extensions to regular expressions, the description as a whole reduces to a finite combination of union, complement and concatenation. This is an essential improvement to the descriptive complexity of ENGFSIG. The result opens a door for further analysis of logical properties and possible optimizations in the FSIG descriptions. The proof contains a new formula for compiling Koskenniemi’s restriction operation without any marker symbols.Peer reviewe

    Algebraic optimization of recursive queries

    Get PDF
    Over the past few years, much attention has been paid to deductive databases. They offer a logic-based interface, and allow formulation of complex recursive queries. However, they do not offer appropriate update facilities, and do not support existing applications. To overcome these problems an SQL-like interface is required besides a logic-based interface.\ud \ud In the PRISMA project we have developed a tightly-coupled distributed database, on a multiprocessor machine, with two user interfaces: SQL and PRISMAlog. Query optimization is localized in one component: the relational query optimizer. Therefore, we have defined an eXtended Relational Algebra that allows recursive query formulation and can also be used for expressing executable schedules, and we have developed algebraic optimization strategies for recursive queries. In this paper we describe an optimization strategy that rewrites regular (in the context of formal grammars) mutually recursive queries into standard Relational Algebra and transitive closure operations. We also describe how to push selections into the resulting transitive closure operations.\ud \ud The reason we focus on algebraic optimization is that, in our opinion, the new generation of advanced database systems will be built starting from existing state-of-the-art relational technology, instead of building a completely new class of systems

    Predicate Abstraction with Indexed Predicates

    Full text link
    Predicate abstraction provides a powerful tool for verifying properties of infinite-state systems using a combination of a decision procedure for a subset of first-order logic and symbolic methods originally developed for finite-state model checking. We consider models containing first-order state variables, where the system state includes mutable functions and predicates. Such a model can describe systems containing arbitrarily large memories, buffers, and arrays of identical processes. We describe a form of predicate abstraction that constructs a formula over a set of universally quantified variables to describe invariant properties of the first-order state variables. We provide a formal justification of the soundness of our approach and describe how it has been used to verify several hardware and software designs, including a directory-based cache coherence protocol.Comment: 27 pages, 4 figures, 1 table, short version appeared in International Conference on Verification, Model Checking and Abstract Interpretation (VMCAI'04), LNCS 2937, pages = 267--28

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    On Relation between Constraint Answer Set Programming and Satisfiability Modulo Theories

    Full text link
    Constraint answer set programming is a promising research direction that integrates answer set programming with constraint processing. It is often informally related to the field of satisfiability modulo theories. Yet, the exact formal link is obscured as the terminology and concepts used in these two research areas differ. In this paper, we connect these two research areas by uncovering the precise formal relation between them. We believe that this work will booster the cross-fertilization of the theoretical foundations and the existing solving methods in both areas. As a step in this direction we provide a translation from constraint answer set programs with integer linear constraints to satisfiability modulo linear integer arithmetic that paves the way to utilizing modern satisfiability modulo theories solvers for computing answer sets of constraint answer set programs.Comment: Under consideration in Theory and Practice of Logic Programming (TPLP
    corecore