468 research outputs found

    Online Learning with Low Rank Experts

    Full text link
    We consider the problem of prediction with expert advice when the losses of the experts have low-dimensional structure: they are restricted to an unknown dd-dimensional subspace. We devise algorithms with regret bounds that are independent of the number of experts and depend only on the rank dd. For the stochastic model we show a tight bound of Θ(dT)\Theta(\sqrt{dT}), and extend it to a setting of an approximate dd subspace. For the adversarial model we show an upper bound of O(dT)O(d\sqrt{T}) and a lower bound of Ω(dT)\Omega(\sqrt{dT})

    The Computational Power of Optimization in Online Learning

    Full text link
    We consider the fundamental problem of prediction with expert advice where the experts are "optimizable": there is a black-box optimization oracle that can be used to compute, in constant time, the leading expert in retrospect at any point in time. In this setting, we give a novel online algorithm that attains vanishing regret with respect to NN experts in total O~(N)\widetilde{O}(\sqrt{N}) computation time. We also give a lower bound showing that this running time cannot be improved (up to log factors) in the oracle model, thereby exhibiting a quadratic speedup as compared to the standard, oracle-free setting where the required time for vanishing regret is Θ~(N)\widetilde{\Theta}(N). These results demonstrate an exponential gap between the power of optimization in online learning and its power in statistical learning: in the latter, an optimization oracle---i.e., an efficient empirical risk minimizer---allows to learn a finite hypothesis class of size NN in time O(logN)O(\log{N}). We also study the implications of our results to learning in repeated zero-sum games, in a setting where the players have access to oracles that compute, in constant time, their best-response to any mixed strategy of their opponent. We show that the runtime required for approximating the minimax value of the game in this setting is Θ~(N)\widetilde{\Theta}(\sqrt{N}), yielding again a quadratic improvement upon the oracle-free setting, where Θ~(N)\widetilde{\Theta}(N) is known to be tight

    Online Agnostic Boosting via Regret Minimization

    Full text link
    Boosting is a widely used machine learning approach based on the idea of aggregating weak learning rules. While in statistical learning numerous boosting methods exist both in the realizable and agnostic settings, in online learning they exist only in the realizable case. In this work we provide the first agnostic online boosting algorithm; that is, given a weak learner with only marginally-better-than-trivial regret guarantees, our algorithm boosts it to a strong learner with sublinear regret. Our algorithm is based on an abstract (and simple) reduction to online convex optimization, which efficiently converts an arbitrary online convex optimizer to an online booster. Moreover, this reduction extends to the statistical as well as the online realizable settings, thus unifying the 4 cases of statistical/online and agnostic/realizable boosting

    The Complexity of Sequential Prediction in Dynamical Systems

    Full text link
    We study the problem of learning to predict the next state of a dynamical system when the underlying evolution function is unknown. Unlike previous work, we place no parametric assumptions on the dynamical system, and study the problem from a learning theory perspective. We define new combinatorial measures and dimensions and show that they quantify the optimal mistake and regret bounds in the realizable and agnostic setting respectively.Comment: 35 page
    corecore