34,068 research outputs found

    Regression with Sparse Approximations of Data

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Bucharest, Romania, 201

    Polynomial Response Surface Approximations for the Multidisciplinary Design Optimization of a High Speed Civil Transport

    Get PDF
    Surrogate functions have become an important tool in multidisciplinary design optimization to deal with noisy functions, high computational cost, and the practical difficulty of integrating legacy disciplinary computer codes. A combination of mathematical, statistical, and engineering techniques, well known in other contexts, have made polynomial surrogate functions viable for MDO. Despite the obvious limitations imposed by sparse high fidelity data in high dimensions and the locality of low order polynomial approximations, the success of the panoply of techniques based on polynomial response surface approximations for MDO shows that the implementation details are more important than the underlying approximation method (polynomial, spline, DACE, kernel regression, etc.). This paper surveys some of the ancillary techniques—statistics, global search, parallel computing, variable complexity modeling—that augment the construction and use of polynomial surrogates

    Understanding and Comparing Scalable Gaussian Process Regression for Big Data

    Full text link
    As a non-parametric Bayesian model which produces informative predictive distribution, Gaussian process (GP) has been widely used in various fields, like regression, classification and optimization. The cubic complexity of standard GP however leads to poor scalability, which poses challenges in the era of big data. Hence, various scalable GPs have been developed in the literature in order to improve the scalability while retaining desirable prediction accuracy. This paper devotes to investigating the methodological characteristics and performance of representative global and local scalable GPs including sparse approximations and local aggregations from four main perspectives: scalability, capability, controllability and robustness. The numerical experiments on two toy examples and five real-world datasets with up to 250K points offer the following findings. In terms of scalability, most of the scalable GPs own a time complexity that is linear to the training size. In terms of capability, the sparse approximations capture the long-term spatial correlations, the local aggregations capture the local patterns but suffer from over-fitting in some scenarios. In terms of controllability, we could improve the performance of sparse approximations by simply increasing the inducing size. But this is not the case for local aggregations. In terms of robustness, local aggregations are robust to various initializations of hyperparameters due to the local attention mechanism. Finally, we highlight that the proper hybrid of global and local scalable GPs may be a promising way to improve both the model capability and scalability for big data.Comment: 25 pages, 15 figures, preprint submitted to KB

    Variational Bayesian multinomial probit regression with Gaussian process priors

    Get PDF
    It is well known in the statistics literature that augmenting binary and polychotomous response models with Gaussian latent variables enables exact Bayesian analysis via Gibbs sampling from the parameter posterior. By adopting such a data augmentation strategy, dispensing with priors over regression coefficients in favour of Gaussian Process (GP) priors over functions, and employing variational approximations to the full posterior we obtain efficient computational methods for Gaussian Process classification in the multi-class setting. The model augmentation with additional latent variables ensures full a posteriori class coupling whilst retaining the simple a priori independent GP covariance structure from which sparse approximations, such as multi-class Informative Vector Machines (IVM), emerge in a very natural and straightforward manner. This is the first time that a fully Variational Bayesian treatment for multi-class GP classification has been developed without having to resort to additional explicit approximations to the non-Gaussian likelihood term. Empirical comparisons with exact analysis via MCMC and Laplace approximations illustrate the utility of the variational approximation as a computationally economic alternative to full MCMC and it is shown to be more accurate than the Laplace approximation

    Distributed Gaussian Processes

    Get PDF
    To scale Gaussian processes (GPs) to large data sets we introduce the robust Bayesian Committee Machine (rBCM), a practical and scalable product-of-experts model for large-scale distributed GP regression. Unlike state-of-the-art sparse GP approximations, the rBCM is conceptually simple and does not rely on inducing or variational parameters. The key idea is to recursively distribute computations to independent computational units and, subsequently, recombine them to form an overall result. Efficient closed-form inference allows for straightforward parallelisation and distributed computations with a small memory footprint. The rBCM is independent of the computational graph and can be used on heterogeneous computing infrastructures, ranging from laptops to clusters. With sufficient computing resources our distributed GP model can handle arbitrarily large data sets.Comment: 10 pages, 5 figures. Appears in Proceedings of ICML 201

    Sparse Regression with Multi-type Regularized Feature Modeling

    Full text link
    Within the statistical and machine learning literature, regularization techniques are often used to construct sparse (predictive) models. Most regularization strategies only work for data where all predictors are treated identically, such as Lasso regression for (continuous) predictors treated as linear effects. However, many predictive problems involve different types of predictors and require a tailored regularization term. We propose a multi-type Lasso penalty that acts on the objective function as a sum of subpenalties, one for each type of predictor. As such, we allow for predictor selection and level fusion within a predictor in a data-driven way, simultaneous with the parameter estimation process. We develop a new estimation strategy for convex predictive models with this multi-type penalty. Using the theory of proximal operators, our estimation procedure is computationally efficient, partitioning the overall optimization problem into easier to solve subproblems, specific for each predictor type and its associated penalty. Earlier research applies approximations to non-differentiable penalties to solve the optimization problem. The proposed SMuRF algorithm removes the need for approximations and achieves a higher accuracy and computational efficiency. This is demonstrated with an extensive simulation study and the analysis of a case-study on insurance pricing analytics
    • …
    corecore