3,544,278 research outputs found

    Analysis of neutrosophic multiple regression

    Get PDF
    The idea of Neutrosophic statistics is utilized for the analysis of the uncertainty observation data. Neutrosophic multiple regression is one of a vital roles in the analysis of the impact between the dependent and independent variables. The Neutrosophic regression equation is useful to predict the future value of the dependent variable. This paper to predict the students' performance in campus interviews is based on aptitude and personality tests, which measures conscientiousness, and predict the future trend. Neutrosophic multiple regression is to authenticate the claim and examine the null hypothesis using the F-test. This study exhibits that Neutrosophic multiple regression is the most efficient model for uncertainty rather than the classical regression model

    Multinomial Inverse Regression for Text Analysis

    Full text link
    Text data, including speeches, stories, and other document forms, are often connected to sentiment variables that are of interest for research in marketing, economics, and elsewhere. It is also very high dimensional and difficult to incorporate into statistical analyses. This article introduces a straightforward framework of sentiment-preserving dimension reduction for text data. Multinomial inverse regression is introduced as a general tool for simplifying predictor sets that can be represented as draws from a multinomial distribution, and we show that logistic regression of phrase counts onto document annotations can be used to obtain low dimension document representations that are rich in sentiment information. To facilitate this modeling, a novel estimation technique is developed for multinomial logistic regression with very high-dimension response. In particular, independent Laplace priors with unknown variance are assigned to each regression coefficient, and we detail an efficient routine for maximization of the joint posterior over coefficients and their prior scale. This "gamma-lasso" scheme yields stable and effective estimation for general high-dimension logistic regression, and we argue that it will be superior to current methods in many settings. Guidelines for prior specification are provided, algorithm convergence is detailed, and estimator properties are outlined from the perspective of the literature on non-concave likelihood penalization. Related work on sentiment analysis from statistics, econometrics, and machine learning is surveyed and connected. Finally, the methods are applied in two detailed examples and we provide out-of-sample prediction studies to illustrate their effectiveness.Comment: Published in the Journal of the American Statistical Association 108, 2013, with discussion (rejoinder is here: http://arxiv.org/abs/1304.4200). Software is available in the textir package for

    Random design analysis of ridge regression

    Full text link
    This work gives a simultaneous analysis of both the ordinary least squares estimator and the ridge regression estimator in the random design setting under mild assumptions on the covariate/response distributions. In particular, the analysis provides sharp results on the ``out-of-sample'' prediction error, as opposed to the ``in-sample'' (fixed design) error. The analysis also reveals the effect of errors in the estimated covariance structure, as well as the effect of modeling errors, neither of which effects are present in the fixed design setting. The proofs of the main results are based on a simple decomposition lemma combined with concentration inequalities for random vectors and matrices

    Robust Linear Regression Analysis - A Greedy Approach

    Full text link
    The task of robust linear estimation in the presence of outliers is of particular importance in signal processing, statistics and machine learning. Although the problem has been stated a few decades ago and solved using classical (considered nowadays) methods, recently it has attracted more attention in the context of sparse modeling, where several notable contributions have been made. In the present manuscript, a new approach is considered in the framework of greedy algorithms. The noise is split into two components: a) the inlier bounded noise and b) the outliers, which are explicitly modeled by employing sparsity arguments. Based on this scheme, a novel efficient algorithm (Greedy Algorithm for Robust Denoising - GARD), is derived. GARD alternates between a least square optimization criterion and an Orthogonal Matching Pursuit (OMP) selection step that identifies the outliers. The case where only outliers are present has been studied separately, where bounds on the \textit{Restricted Isometry Property} guarantee that the recovery of the signal via GARD is exact. Moreover, theoretical results concerning convergence as well as the derivation of error bounds in the case of additional bounded noise are discussed. Finally, we provide extensive simulations, which demonstrate the comparative advantages of the new technique

    Method for nonlinear exponential regression analysis

    Get PDF
    Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer
    corecore