79,324 research outputs found

    Integrate the GM(1,1) and Verhulst models to predict software stage effort

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Software effort prediction clearly plays a crucial role in software project management. In keeping with more dynamic approaches to software development, it is not sufficient to only predict the whole-project effort at an early stage. Rather, the project manager must also dynamically predict the effort of different stages or activities during the software development process. This can assist the project manager to reestimate effort and adjust the project plan, thus avoiding effort or schedule overruns. This paper presents a method for software physical time stage-effort prediction based on grey models GM(1,1) and Verhulst. This method establishes models dynamically according to particular types of stage-effort sequences, and can adapt to particular development methodologies automatically by using a novel grey feedback mechanism. We evaluate the proposed method with a large-scale real-world software engineering dataset, and compare it with the linear regression method and the Kalman filter method, revealing that accuracy has been improved by at least 28% and 50%, respectively. The results indicate that the method can be effective and has considerable potential. We believe that stage predictions could be a useful complement to whole-project effort prediction methods.National Natural Science Foundation of China and the Hi-Tech Research and Development Program of Chin

    The consistency of empirical comparisons of regression and analogy-based software project cost prediction

    Get PDF
    OBJECTIVE - to determine the consistency within and between results in empirical studies of software engineering cost estimation. We focus on regression and analogy techniques as these are commonly used. METHOD – we conducted an exhaustive search using predefined inclusion and exclusion criteria and identified 67 journal papers and 104 conference papers. From this sample we identified 11 journal papers and 9 conference papers that used both methods. RESULTS – our analysis found that about 25% of studies were internally inconclusive. We also found that there is approximately equal evidence in favour of, and against analogy-based methods. CONCLUSIONS – we confirm the lack of consistency in the findings and argue that this inconsistent pattern from 20 different studies comparing regression and analogy is somewhat disturbing. It suggests that we need to ask more detailed questions than just: “What is the best prediction system?

    An Investigation of Rule Induction Based Prediction Systems

    Get PDF
    Traditionally, researchers have used either off-the-shelf models such as COCOMO, or developed local models using statistical techniques such as stepwise regression, to predict software effort estimates. More recently, attention has turned to a variety of machine learning methods such as artificial neural networks (ANNs), case-based reasoning (CBR) and rule induction (RI). This position paper outlines some preliminary research into the use of rule induction methods to build software cost models. We briefly describe the use of rule induction methods and then apply the technique to a dataset of 81 software projects derived from a Canadian software house in the late 1980s. We show that RI methods tend to be unstable and generally predict with quite variable accuracy. Pruning the feature set, however, has a significant impact upon accuracy. We also compare our results with a prediction system based upon a standard regression procedure. We suggest that further work is carried out to examine the effects of the relationships among, and between, the features of the attributes on the generated rules in an attempt to improve on current prediction techniques and enhance our understanding of machine learning methods

    Making Software Cost Data Available for Meta-Analysis

    Get PDF
    In this paper we consider the increasing need for meta-analysis within empirical software engineering. However, we also note that a necessary precondition to such forms of analysis is to have both the results in an appropriate format and sufficient contextual information to avoid misleading inferences. We consider the implications in the field of software project effort estimation and show that for a sample of 12 seemingly similar published studies, the results are difficult to compare let alone combine. This is due to different reporting conventions. We argue that a protocol is required and make some suggestions as to what it should contain
    corecore