3 research outputs found

    iRegNet: Non-rigid Registration of MRI to Interventional US for Brain-Shift Compensation using Convolutional Neural Networks

    Get PDF
    Accurate and safe neurosurgical intervention can be affected by intra-operative tissue deformation, known as brain-shift. In this study, we propose an automatic, fast, and accurate deformable method, called iRegNet, for registering pre-operative magnetic resonance images to intra-operative ultrasound volumes to compensate for brain-shift. iRegNet is a robust end-to-end deep learning approach for the non-linear registration of MRI-iUS images in the context of image-guided neurosurgery. Pre-operative MRI (as moving image) and iUS (as fixed image) are first appended to our convolutional neural network, after which a non-rigid transformation field is estimated. The MRI image is then transformed using the output displacement field to the iUS coordinate system. Extensive experiments have been conducted on two multi-location databases, which are the BITE and the RESECT. Quantitatively, iRegNet reduced the mean landmark errors from pre-registration value of (4.18 ± 1.84 and 5.35 ± 4.19 mm) to the lowest value of (1.47 ± 0.61 and 0.84 ± 0.16 mm) for the BITE and RESECT datasets, respectively. Additional qualitative validation of this study was conducted by two expert neurosurgeons through overlaying MRI-iUS pairs before and after the deformable registration. Experimental findings show that our proposed iRegNet is fast and achieves state-of-the-art accuracies outperforming state-of-the-art approaches. Furthermore, the proposed iRegNet can deliver competitive results, even in the case of non-trained images as proof of its generality and can therefore be valuable in intra-operative neurosurgical guidance

    Deep Multimodality Image-Guided System for Assisting Neurosurgery

    Get PDF
    Intrakranielle Hirntumoren gehören zu den zehn häufigsten bösartigen Krebsarten und sind für eine erhebliche Morbidität und Mortalität verantwortlich. Die größte histologische Kategorie der primären Hirntumoren sind die Gliome, die ein äußerst heterogenes Erschei-nungsbild aufweisen und radiologisch schwer von anderen Hirnläsionen zu unterscheiden sind. Die Neurochirurgie ist meist die Standardbehandlung für neu diagnostizierte Gliom-Patienten und kann von einer Strahlentherapie und einer adjuvanten Temozolomid-Chemotherapie gefolgt werden. Die Hirntumorchirurgie steht jedoch vor großen Herausforderungen, wenn es darum geht, eine maximale Tumorentfernung zu erreichen und gleichzeitig postoperative neurologische Defizite zu vermeiden. Zwei dieser neurochirurgischen Herausforderungen werden im Folgenden vorgestellt. Erstens ist die manuelle Abgrenzung des Glioms einschließlich seiner Unterregionen aufgrund seines infiltrativen Charakters und des Vorhandenseins einer heterogenen Kontrastverstärkung schwierig. Zweitens verformt das Gehirn seine Form ̶ die so genannte "Hirnverschiebung" ̶ als Reaktion auf chirurgische Manipulationen, Schwellungen durch osmotische Medikamente und Anästhesie, was den Nutzen präopera-tiver Bilddaten für die Steuerung des Eingriffs einschränkt. Bildgesteuerte Systeme bieten Ärzten einen unschätzbaren Einblick in anatomische oder pathologische Ziele auf der Grundlage moderner Bildgebungsmodalitäten wie Magnetreso-nanztomographie (MRT) und Ultraschall (US). Bei den bildgesteuerten Instrumenten handelt es sich hauptsächlich um computergestützte Systeme, die mit Hilfe von Computer-Vision-Methoden die Durchführung perioperativer chirurgischer Eingriffe erleichtern. Die Chirurgen müssen jedoch immer noch den Operationsplan aus präoperativen Bildern gedanklich mit Echtzeitinformationen zusammenführen, während sie die chirurgischen Instrumente im Körper manipulieren und die Zielerreichung überwachen. Daher war die Notwendigkeit einer Bildführung während neurochirurgischer Eingriffe schon immer ein wichtiges Anliegen der Ärzte. Ziel dieser Forschungsarbeit ist die Entwicklung eines neuartigen Systems für die peri-operative bildgeführte Neurochirurgie (IGN), nämlich DeepIGN, mit dem die erwarteten Ergebnisse der Hirntumorchirurgie erzielt werden können, wodurch die Gesamtüberle-bensrate maximiert und die postoperative neurologische Morbidität minimiert wird. Im Rahmen dieser Arbeit werden zunächst neuartige Methoden für die Kernbestandteile des DeepIGN-Systems der Hirntumor-Segmentierung im MRT und der multimodalen präope-rativen MRT zur intraoperativen US-Bildregistrierung (iUS) unter Verwendung der jüngs-ten Entwicklungen im Deep Learning vorgeschlagen. Anschließend wird die Ergebnisvor-hersage der verwendeten Deep-Learning-Netze weiter interpretiert und untersucht, indem für den Menschen verständliche, erklärbare Karten erstellt werden. Schließlich wurden Open-Source-Pakete entwickelt und in weithin anerkannte Software integriert, die für die Integration von Informationen aus Tracking-Systemen, die Bildvisualisierung und -fusion sowie die Anzeige von Echtzeit-Updates der Instrumente in Bezug auf den Patientenbe-reich zuständig ist. Die Komponenten von DeepIGN wurden im Labor validiert und in einem simulierten Operationssaal evaluiert. Für das Segmentierungsmodul erreichte DeepSeg, ein generisches entkoppeltes Deep-Learning-Framework für die automatische Abgrenzung von Gliomen in der MRT des Gehirns, eine Genauigkeit von 0,84 in Bezug auf den Würfelkoeffizienten für das Bruttotumorvolumen. Leistungsverbesserungen wurden bei der Anwendung fort-schrittlicher Deep-Learning-Ansätze wie 3D-Faltungen über alle Schichten, regionenbasier-tes Training, fliegende Datenerweiterungstechniken und Ensemble-Methoden beobachtet. Um Hirnverschiebungen zu kompensieren, wird ein automatisierter, schneller und genauer deformierbarer Ansatz, iRegNet, für die Registrierung präoperativer MRT zu iUS-Volumen als Teil des multimodalen Registrierungsmoduls vorgeschlagen. Es wurden umfangreiche Experimente mit zwei Multi-Location-Datenbanken durchgeführt: BITE und RESECT. Zwei erfahrene Neurochirurgen führten eine zusätzliche qualitative Validierung dieser Studie durch, indem sie MRT-iUS-Paare vor und nach der deformierbaren Registrierung überlagerten. Die experimentellen Ergebnisse zeigen, dass das vorgeschlagene iRegNet schnell ist und die besten Genauigkeiten erreicht. Darüber hinaus kann das vorgeschlagene iRegNet selbst bei nicht trainierten Bildern konkurrenzfähige Ergebnisse liefern, was seine Allgemeingültigkeit unter Beweis stellt und daher für die intraoperative neurochirurgische Führung von Nutzen sein kann. Für das Modul "Erklärbarkeit" wird das NeuroXAI-Framework vorgeschlagen, um das Vertrauen medizinischer Experten in die Anwendung von KI-Techniken und tiefen neuro-nalen Netzen zu erhöhen. Die NeuroXAI umfasst sieben Erklärungsmethoden, die Visuali-sierungskarten bereitstellen, um tiefe Lernmodelle transparent zu machen. Die experimen-tellen Ergebnisse zeigen, dass der vorgeschlagene XAI-Rahmen eine gute Leistung bei der Extraktion lokaler und globaler Kontexte sowie bei der Erstellung erklärbarer Salienzkar-ten erzielt, um die Vorhersage des tiefen Netzwerks zu verstehen. Darüber hinaus werden Visualisierungskarten erstellt, um den Informationsfluss in den internen Schichten des Encoder-Decoder-Netzwerks zu erkennen und den Beitrag der MRI-Modalitäten zur end-gültigen Vorhersage zu verstehen. Der Erklärungsprozess könnte medizinischen Fachleu-ten zusätzliche Informationen über die Ergebnisse der Tumorsegmentierung liefern und somit helfen zu verstehen, wie das Deep-Learning-Modell MRT-Daten erfolgreich verar-beiten kann. Außerdem wurde ein interaktives neurochirurgisches Display für die Eingriffsführung entwickelt, das die verfügbare kommerzielle Hardware wie iUS-Navigationsgeräte und Instrumentenverfolgungssysteme unterstützt. Das klinische Umfeld und die technischen Anforderungen des integrierten multimodalen DeepIGN-Systems wurden mit der Fähigkeit zur Integration von (1) präoperativen MRT-Daten und zugehörigen 3D-Volumenrekonstruktionen, (2) Echtzeit-iUS-Daten und (3) positioneller Instrumentenver-folgung geschaffen. Die Genauigkeit dieses Systems wurde anhand eines benutzerdefi-nierten Agar-Phantom-Modells getestet, und sein Einsatz in einem vorklinischen Operati-onssaal wurde simuliert. Die Ergebnisse der klinischen Simulation bestätigten, dass die Montage des Systems einfach ist, in einer klinisch akzeptablen Zeit von 15 Minuten durchgeführt werden kann und mit einer klinisch akzeptablen Genauigkeit erfolgt. In dieser Arbeit wurde ein multimodales IGN-System entwickelt, das die jüngsten Fort-schritte im Bereich des Deep Learning nutzt, um Neurochirurgen präzise zu führen und prä- und intraoperative Patientenbilddaten sowie interventionelle Geräte in das chirurgi-sche Verfahren einzubeziehen. DeepIGN wurde als Open-Source-Forschungssoftware entwickelt, um die Forschung auf diesem Gebiet zu beschleunigen, die gemeinsame Nut-zung durch mehrere Forschungsgruppen zu erleichtern und eine kontinuierliche Weiter-entwicklung durch die Gemeinschaft zu ermöglichen. Die experimentellen Ergebnisse sind sehr vielversprechend für die Anwendung von Deep-Learning-Modellen zur Unterstützung interventioneller Verfahren - ein entscheidender Schritt zur Verbesserung der chirurgi-schen Behandlung von Hirntumoren und der entsprechenden langfristigen postoperativen Ergebnisse
    corecore