95,157 research outputs found

    Transformation elastodynamics and active exterior acoustic cloaking

    Full text link
    This chapter consists of three parts. In the first part we recall the elastodynamic equations under coordinate transformations. The idea is to use coordinate transformations to manipulate waves propagating in an elastic material. Then we study the effect of transformations on a mass-spring network model. The transformed networks can be realized with "torque springs", which are introduced here and are springs with a force proportional to the displacement in a direction other than the direction of the spring terminals. Possible homogenizations of the transformed networks are presented, with potential applications to cloaking. In the second and third parts we present cloaking methods that are based on cancelling an incident field using active devices which are exterior to the cloaked region and that do not generate significant fields far away from the devices. In the second part, the exterior cloaking problem for the Laplace equation is reformulated as the problem of polynomial approximation of analytic functions. An explicit solution is given that allows to cloak larger objects at a fixed distance from the cloaking device, compared to previous explicit solutions. In the third part we consider the active exterior cloaking problem for the Helmholtz equation in 3D. Our method uses the Green's formula and an addition theorem for spherical outgoing waves to design devices that mimic the effect of the single and double layer potentials in Green's formula.Comment: Submitted as a chapter for the volume "Acoustic metamaterials: Negative refraction, imaging, lensing and cloaking", Craster and Guenneau ed., Springe

    Accurate Transfer Maps for Realistic Beamline Elements: Part I, Straight Elements

    Full text link
    The behavior of orbits in charged-particle beam transport systems, including both linear and circular accelerators as well as final focus sections and spectrometers, can depend sensitively on nonlinear fringe-field and high-order-multipole effects in the various beam-line elements. The inclusion of these effects requires a detailed and realistic model of the interior and fringe fields, including their high spatial derivatives. A collection of surface fitting methods has been developed for extracting this information accurately from 3-dimensional field data on a grid, as provided by various 3-dimensional finite-element field codes. Based on these realistic field models, Lie or other methods may be used to compute accurate design orbits and accurate transfer maps about these orbits. Part I of this work presents a treatment of straight-axis magnetic elements, while Part II will treat bending dipoles with large sagitta. An exactly-soluble but numerically challenging model field is used to provide a rigorous collection of performance benchmarks.Comment: Accepted to PRST-AB. Changes: minor figure modifications, reference added, typos corrected

    A Surface Admittance Equivalence Principle for Non-Radiating and Cloaking Problems

    Full text link
    In this paper, we address non-radiating and cloaking problems exploiting the surface equivalence principle, by imposing at any arbitrary boundary the control of the admittance discontinuity between the overall object (with or without cloak) and the background. After a rigorous demonstration, we apply this model to a non-radiating problem, appealing for anapole modes and metamolecules modeling, and to a cloaking problem, appealing for non-Foster metasurface design. A straightforward analytical condition is obtained for controlling the scattering of a dielectric object over a surface boundary of interest. Previous quasi-static results are confirmed and a general closed-form solution beyond the subwavelength regime is provided. In addition, this formulation can be extended to other wave phenomena once the proper admittance function is defined (thermal, acoustics, elastomechanics, etc.).Comment: 7 page

    Quantum Conductivity for Metal-Insulator-Metal Nanostructures

    Full text link
    We present a methodology based on quantum mechanics for assigning quantum conductivity when an ac field is applied across a variable gap between two plasmonic nanoparticles with an insulator sandwiched between them. The quantum tunneling effect is portrayed by a set of quantum conductivity coefficients describing the linear ac conductivity responding at the frequency of the applied field and nonlinear coefficients that modulate the field amplitude at the fundamental frequency and its harmonics. The quantum conductivity, determined with no fit parameters, has both frequency and gap dependence that can be applied to determine the nonlinear quantum effects of strong applied electromagnetic fields even when the system is composed of dissimilar metal nanostructures. Our methodology compares well to results on quantum tunneling effects reported in the literature and it is simple to extend it to a number of systems with different metals and different insulators between them

    Restoring the full velocity field in the gaseous disk ofthe spiral galaxy NGC 157

    Get PDF
    We analyse the line-of-sight velocity field of ionized gas in the spiral galaxy NGC 157 which has been obtained in the H\alpha emission at the 6m telescope of SAO RAS. The existence of systematic deviations of the observed gas velocities from pure circular motion is shown. A detailed investigation of these deviations is undertaken by applying a Fourier analysis of the azimuthal distributions of the line-of-sight velocities at different distances from the galactic center. As a result of the analysis, all the main parameters of the wave spiral pattern are determined: the corotation radius, the amplitudes and phases of the gas velocity perturbations at different radii, and the velocity of circular rotation of the disk corrected for the velocity perturbations due to spiral arms. At a high confidence level, the presence of the two giant anticyclones in the reference frame rotating with the spiral pattern is shown; their sizes and the localization of their centers are consistent with the results of the analytic theory and of numerical simulations. Besides the anticyclones, the existence of cyclones in residual velocity fields of spiral galaxies is predicted. In the reference frame rotating with the spiral pattern these cyclones have to reveal themselves in galaxies where a radial gradient of azimuthal residual velocity is steeper than that of the rotation velocity (abridged).Comment: 23 pages including 25 eps-figures. Accepted for publication in A&

    Spectroscopy studies of straincompensated mid-infrared QCL active regions on misoriented substrates

    Get PDF
    In this work, we perform spectroscopic studies of AlGaAs/InGaAs quantum cascade laser structures that demonstrate frequency mixing using strain-compensated active regions. Using a three-quantum well design based on diagonal transitions, we incorporate strain in the active region using single and double well configurations on various surface planes (100) and (111). We observe the influence of piezoelectric properties in molecular beam epitaxy grown structures, where the addition of indium in the GaAs matrix increases the band bending in between injector regions and demonstrates a strong dependence on process conditions that include sample preparation, deposition rates, mole fraction, and enhanced surface diffusion lengths. We produced mid-infrared structures under identical deposition conditions that differentiate the role of indium(strain) in intracavity frequency mixing and show evidence that this design can potentially be implemented using other material systems

    Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jefferson Lab

    Full text link
    This report presents a brief summary of the science opportunities and program of a polarized medium energy electron-ion collider at Jefferson Lab and a comprehensive description of the conceptual design of such a collider based on the CEBAF electron accelerator facility.Comment: 160 pages, ~93 figures This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC05-06OR23177, DE-AC02-06CH11357, DE-AC05-060R23177, and DESC0005823. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purpose

    Surface Integral Method for the Second Harmonic Generation in Metal Nanoparticles

    Full text link
    Second harmonic (SH) radiation in metal nanoparticles is generated by both nonlocal-bulk and local-surface SH sources, induced by the electromagnetic field at the fundamental frequency. We propose a surface integral equation (SIE) method for evaluating the SH radiation generated by metal nanoparticles with arbitrary shapes, considering all SH sources. We demonstrate that the contribution of the nonlocal-bulk SH sources to the SH electromagnetic field can be taken into account through equivalent surface electric and magnetic currents. We numerically solve the SIE problem by using the Galerkin method and the Rao-Wilton-Glisson basis functions in the framework of the distribution theory. The accuracy of the proposed method is verified by comparison with the SH-Mie analytical solution. As an example of a complex-shaped particle, we investigate the SH scattering by a triangular nano-prism. This method paves the way for a better understanding of the SH generation process in arbitrarily shaped nanoparticles and can also have a high impact in the design of novel nanoplasmonic devices with enhanced SH emission
    • …
    corecore