1,884 research outputs found

    Exploiting surroundedness for saliency detection: a boolean map approach

    Full text link
    We demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image is characterized by a set of binary images, which are generated by randomly thresholding the image's feature maps in a whitened feature space. Based on a Gestalt principle of figure-ground segregation, BMS computes a saliency map by discovering surrounded regions via topological analysis of Boolean maps. Furthermore, we draw a connection between BMS and the Minimum Barrier Distance to provide insight into why and how BMS can properly captures the surroundedness cue via Boolean maps. The strength of BMS is verified by its simplicity, efficiency and superior performance compared with 10 state-of-the-art methods on seven eye tracking benchmark datasets.US National Science Foundation; 1059218; 1029430http://cs-people.bu.edu/jmzhang/BMS/BMS_iccv13_preprint.pdfAccepted manuscrip

    Highlighting objects of interest in an image by integrating saliency and depth

    Full text link
    Stereo images have been captured primarily for 3D reconstruction in the past. However, the depth information acquired from stereo can also be used along with saliency to highlight certain objects in a scene. This approach can be used to make still images more interesting to look at, and highlight objects of interest in the scene. We introduce this novel direction in this paper, and discuss the theoretical framework behind the approach. Even though we use depth from stereo in this work, our approach is applicable to depth data acquired from any sensor modality. Experimental results on both indoor and outdoor scenes demonstrate the benefits of our algorithm

    Hierarchical Salient Object Detection for Assisted Grasping

    Full text link
    Visual scene decomposition into semantic entities is one of the major challenges when creating a reliable object grasping system. Recently, we introduced a bottom-up hierarchical clustering approach which is able to segment objects and parts in a scene. In this paper, we introduce a transform from such a segmentation into a corresponding, hierarchical saliency function. In comprehensive experiments we demonstrate its ability to detect salient objects in a scene. Furthermore, this hierarchical saliency defines a most salient corresponding region (scale) for every point in an image. Based on this, an easy-to-use pick and place manipulation system was developed and tested exemplarily.Comment: Accepted for ICRA 201

    Segmenting salient objects in 3D point clouds of indoor scenes using geodesic distances

    Get PDF
    Visual attention mechanisms allow humans to extract relevant and important information from raw input percepts. Many applications in robotics and computer vision have modeled human visual attention mechanisms using a bottom-up data centric approach. In contrast, recent studies in cognitive science highlight advantages of a top-down approach to the attention mechanisms, especially in applications involving goal-directed search. In this paper, we propose a top-down approach for extracting salient objects/regions of space. The top-down methodology first isolates different objects in an unorganized point cloud, and compares each object for uniqueness. A measure of saliency using the properties of geodesic distance on the object’s surface is defined. Our method works on 3D point cloud data, and identifies salient objects of high curvature and unique silhouette. These being the most unique features of a scene, are robust to clutter, occlusions and view point changes. We provide the details of the proposed method and initial experimental results
    • …
    corecore