4,133 research outputs found

    Superlinear advantage for exact quantum algorithms

    Full text link
    A quantum algorithm is exact if, on any input data, it outputs the correct answer with certainty (probability 1). A key question is: how big is the advantage of exact quantum algorithms over their classical counterparts: deterministic algorithms. For total Boolean functions in the query model, the biggest known gap was just a factor of 2: PARITY of N inputs bits requires NN queries classically but can be computed with N/2 queries by an exact quantum algorithm. We present the first example of a Boolean function f(x_1, ..., x_N) for which exact quantum algorithms have superlinear advantage over the deterministic algorithms. Any deterministic algorithm that computes our function must use N queries but an exact quantum algorithm can compute it with O(N^{0.8675...}) queries.Comment: 20 pages, v6: small number of small correction

    Span programs and quantum algorithms for st-connectivity and claw detection

    Full text link
    We introduce a span program that decides st-connectivity, and generalize the span program to develop quantum algorithms for several graph problems. First, we give an algorithm for st-connectivity that uses O(n d^{1/2}) quantum queries to the n x n adjacency matrix to decide if vertices s and t are connected, under the promise that they either are connected by a path of length at most d, or are disconnected. We also show that if T is a path, a star with two subdivided legs, or a subdivision of a claw, its presence as a subgraph in the input graph G can be detected with O(n) quantum queries to the adjacency matrix. Under the promise that G either contains T as a subgraph or does not contain T as a minor, we give O(n)-query quantum algorithms for detecting T either a triangle or a subdivision of a star. All these algorithms can be implemented time efficiently and, except for the triangle-detection algorithm, in logarithmic space. One of the main techniques is to modify the st-connectivity span program to drop along the way "breadcrumbs," which must be retrieved before the path from s is allowed to enter t.Comment: 18 pages, 4 figure

    Quantum query complexity of state conversion

    Full text link
    State conversion generalizes query complexity to the problem of converting between two input-dependent quantum states by making queries to the input. We characterize the complexity of this problem by introducing a natural information-theoretic norm that extends the Schur product operator norm. The complexity of converting between two systems of states is given by the distance between them, as measured by this norm. In the special case of function evaluation, the norm is closely related to the general adversary bound, a semi-definite program that lower-bounds the number of input queries needed by a quantum algorithm to evaluate a function. We thus obtain that the general adversary bound characterizes the quantum query complexity of any function whatsoever. This generalizes and simplifies the proof of the same result in the case of boolean input and output. Also in the case of function evaluation, we show that our norm satisfies a remarkable composition property, implying that the quantum query complexity of the composition of two functions is at most the product of the query complexities of the functions, up to a constant. Finally, our result implies that discrete and continuous-time query models are equivalent in the bounded-error setting, even for the general state-conversion problem.Comment: 19 pages, 2 figures; heavily revised with new results and simpler proof

    Fixed-point quantum search with an optimal number of queries

    Get PDF
    Grover's quantum search and its generalization, quantum amplitude amplification, provide quadratic advantage over classical algorithms for a diverse set of tasks, but are tricky to use without knowing beforehand what fraction λ\lambda of the initial state is comprised of the target states. In contrast, fixed-point search algorithms need only a reliable lower bound on this fraction, but, as a consequence, lose the very quadratic advantage that makes Grover's algorithm so appealing. Here we provide the first version of amplitude amplification that achieves fixed-point behavior without sacrificing the quantum speedup. Our result incorporates an adjustable bound on the failure probability, and, for a given number of oracle queries, guarantees that this bound is satisfied over the broadest possible range of λ\lambda.Comment: 4 pages plus references, 2 figure

    Approximate Span Programs

    Get PDF
    Span programs are a model of computation that have been used to design quantum algorithms, mainly in the query model. For any decision problem, there exists a span program that leads to an algorithm with optimal quantum query complexity, but finding such an algorithm is generally challenging. We consider new ways of designing quantum algorithms using span programs. We show how any span program that decides a problem ff can also be used to decide "property testing" versions of ff, or more generally, approximate the span program witness size, a property of the input related to ff. For example, using our techniques, the span program for OR, which can be used to design an optimal algorithm for the OR function, can also be used to design optimal algorithms for: threshold functions, in which we want to decide if the Hamming weight of a string is above a threshold or far below, given the promise that one of these is true; and approximate counting, in which we want to estimate the Hamming weight of the input. We achieve these results by relaxing the requirement that 1-inputs hit some target exactly in the span program, which could make design of span programs easier. We also give an exposition of span program structure, which increases the understanding of this important model. One implication is alternative algorithms for estimating the witness size when the phase gap of a certain unitary can be lower bounded. We show how to lower bound this phase gap in some cases. As applications, we give the first upper bounds in the adjacency query model on the quantum time complexity of estimating the effective resistance between ss and tt, Rs,t(G)R_{s,t}(G), of O~(1ϵ3/2nRs,t(G))\tilde O(\frac{1}{\epsilon^{3/2}}n\sqrt{R_{s,t}(G)}), and, when μ\mu is a lower bound on λ2(G)\lambda_2(G), by our phase gap lower bound, we can obtain O~(1ϵnRs,t(G)/μ)\tilde O(\frac{1}{\epsilon}n\sqrt{R_{s,t}(G)/\mu}), both using O(logn)O(\log n) space
    corecore