41 research outputs found

    Reflection and Preservation of Properties in Coalgebraic (bi)Simulations

    Get PDF
    Our objective is to extend the standard results of preservation and reflection of properties by bisimulations to the coalgebraic setting, as well as to study under what conditions these results hold for simulations. The notion of bisimulation is the classical one, while for simulations we use that proposed by Hughes and Jacobs. As for properties, we start by using a generalization of linear temporal logic to arbitrary coalgebras suggested by Jacobs, and then an extension by Kurtz which includes atomic propositions too

    Coalgebraic analysis of probabilistic systems

    Get PDF

    A companion to coalgebraic weak bisimulation for action-type systems

    Get PDF
    We propose a coalgebraic definition of weak bisimulation for classes of coalgebras obtained from bifunctors in the category Set. Weak bisim-ilarity for a system is obtained as strong bisimilarity of a transformed system. The particular transformation consists of two steps: First, the behavior on actions is lifted to behavior on finite words. Second, the behavior on finite words is taken modulo the hiding of internal or in-visible actions, yielding behavior on equivalence classes of words closed under silent steps. The coalgebraic definition is validated by two cor-respondence results: one for the classical notion of weak bisimulation of Milner, another for the notion of weak bisimulation for generative probabilistic transition systems as advocated by Baier and Hermanns.

    Components as coalgebras : the refinement dimension

    Get PDF
    This paper characterizes refinement of state-based software components modeled as pointed coalgebras for some Set endofunctors. The proposed characterization is parametric on a specification of the underlying behaviour model introduced as astrong monad. This provides a basis to reason about (and transform) state-based software designs. In particular it is shown how refinement can be applied to the development of the inequational subset of a calculus of generic software components

    Transposing partial components: an exercise on coalgebraic refinement

    Get PDF
    A partial component is a process which fails or dies at some stage, thus exhibiting a finite, more ephemeral behaviour than expected (eg, operating system crash). Partiality --- which is the rule rather than exception in formal modelling --- can be treated mathematically via totalization techniques. In the case of partial functions, totalization involves error values and exceptions. In the context of a coalgebraic approach to component semantics, this paper argues that the behavioural counterpart to such functional techniques should extend behaviour with try-again cycles preventing from component collapse, thus extending totalization or transposition from the algebraic to the coalgebraic context. We show that a refinement relationship holds between original and totalized components which is reasoned about in a coalgebraic approach to component refinement expressed in the pointfree binary relation calculus. As part of the pragmatic aims of this research, we also address the factorization of every such totalized coalgebra into two coalgebraic components --- the original one and an added front-end --- which cooperate in a client-serverstyle.Fundação para a Ciência e a Tecnologia (FCT) - PURe Project under contract POSI/ICHS/44304/2002

    Weak bisimulation for action-type coalgebras

    Get PDF

    Coalgebra for the working software engineer

    Get PDF
    Often referred to as ‘the mathematics of dynamical, state-based systems’, Coalgebra claims to provide a compositional and uniform framework to spec ify, analyse and reason about state and behaviour in computing. This paper addresses this claim by discussing why Coalgebra matters for the design of models and logics for computational phenomena. To a great extent, in this domain one is interested in properties that are preserved along the system’s evolution, the so-called ‘business rules’ or system’s invariants, as well as in liveness requirements, stating that e.g. some desirable outcome will be eventually produced. Both classes are examples of modal assertions, i.e. properties that are to be interpreted across a transition system capturing the system’s dynamics. The relevance of modal reasoning in computing is witnessed by the fact that most university syllabi in the area include some incursion into modal logic, in particular in its temporal variants. The novelty is that, as it happens with the notions of transition, behaviour, or observational equivalence, modalities in Coalgebra acquire a shape . That is, they become parametric on whatever type of behaviour, and corresponding coinduction scheme, seems appropriate for addressing the problem at hand. In this context, the paper revisits Coalgebra from a computational perspective, focussing on three topics central to software design: how systems are modelled, how models are composed, and finally, how properties of their behaviours can be expressed and verified.Fuzziness, as a way to express imprecision, or uncertainty, in computation is an important feature in a number of current application scenarios: from hybrid systems interfacing with sensor networks with error boundaries, to knowledge bases collecting data from often non-coincident human experts. Their abstraction in e.g. fuzzy transition systems led to a number of mathematical structures to model this sort of systems and reason about them. This paper adds two more elements to this family: two modal logics, framed as institutions, to reason about fuzzy transition systems and the corresponding processes. This paves the way to the development, in the second part of the paper, of an associated theory of structured specification for fuzzy computational systems

    Coalgebraic Weak Bisimulation for Action-Type Systems

    Get PDF
    We propose a coalgebraic definition of weak bisimulation for classes of coalgebras obtained from bifunctors in the category Set. Weak bisimilarity for a system is obtained as strong bisimilarity of a transformed system. The particular transformation consists of two steps: First, the behavior on actions is lifted to behavior on finite words. Second, the behavior on finite words is taken modulo the hiding of internal or invisible actions, yielding behavior on equivalence classes of words closed under silent steps. The coalgebraic definition is validated by two correspondence results: one for the classical notion of weak bisimulation of Milner, another for the notion of weak bisimulation for generative probabilistic transition systems as advocated by Baier and Hermanns

    Coalgebraic Weak Bisimulation for Action-Type Systems

    Get PDF
    We propose a coalgebraic definition of weak bisimulation for classes of coalgebras obtained from bifunctors in the category Set. Weak bisimilarity for a system is obtained as strong bisimilarity of a transformed system. The particular transformation consists of two steps: First, the behavior on actions is lifted to behavior on finite words. Second, the behavior on finite words is taken modulo the hiding of internal or invisible actions, yielding behavior on equivalence classes of words closed under silent steps. The coalgebraic definition is validated by two correspondence results: one for the classical notion of weak bisimulation of Milner, another for the notion of weak bisimulation for generative probabilistic transition systems as advocated by Baier and Hermanns
    corecore