
Transposing Partial Components

— an Exercise on Coalgebraic Refinement ?

Lúıs S. Barbosa and José N. Oliveira a,

aDepartamento de Informática, Di-Cctc
Universidade do Minho, Portugal

Abstract

A partial component is a process which fails or dies at some stage, thus exhibiting
a finite, more ephemeral behaviour than expected (e.g. operating system crash).
Partiality — which is the rule rather than exception in formal modelling — can be
treated mathematically via totalization techniques. In the case of partial functions,
totalization involves error values and exceptions.

In the context of a coalgebraic approach to component semantics, this paper
argues that the behavioural counterpart to such functional techniques should extend
behaviour with try-again cycles preventing from component collapse, thus extending
totalization or transposition from the algebraic to the coalgebraic context.

We show that a refinement relationship holds between original and totalized com-
ponents which is reasoned about in a coalgebraic approach to component refinement
expressed in the pointfree binary relation calculus.

As part of the pragmatic aims of this research, we also address the factorization
of every such totalized coalgebra into two coalgebraic components — the original
one and an added front-end — which cooperate in a client-server style.

Key words: partial components, try-again cycles, refinement, coalgebra

1 Introduction

Partial functions (also termed simple relations) arise in mathematics and pro-
gramming wherever their output is undefined for some input data. Program-

? Research supported by Fct (the Portuguese Foundation for Science and Techno-
logy), in the context of the PURe Project under contract POSI/ICHS/44304/2002.

Email address: {lsb,jno}@di.uminho.pt (Lúıs S. Barbosa and José
N. Oliveira).

Preprint submitted to Elsevier Science 7 June 2006

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55607585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

mers have learnt to deal with this situation by enriching the codomain of
such functions with a special error mark indicating that nothing is output. In
C/C++, for instance, this leads to functions which output pointers to values
rather than just values. In functional languages such as Haskell [1], this has
to do with functions which output Maybe-values rather than values, where
Maybe is datatype Maybe a = Nothing | Just a.

This effort towards functional totalization can be regarded as the addition of
an interface shielding partial functions against inputs which lead to undefined-
ness. Instead of failing or dying, the evaluation of such shielded functions raises
exceptions in a monadic style. From a data refinement perspective, every such
totalized function can be regarded as a fully functional implementation arising
from codomain pointer -reification [2].

The equivalent of this situation in a coalgebraic setting — partial coalgebras
— leads to processes which fail or die at some stage, thus exhibiting a finite,
more ephemeral behaviour than expected (e.g. operating system crash). Soft-
ware designers have known to overcome process premature death by shielding
services with interfaces which prevent from reaching dead states. Formally,
this means to enrich the underlying coalgebra with a try-again behavioural
alternative (signaling out some error message, in practice) such as is usual in
e.g. command-line interpreters and human-computer interfacing.

In this paper, we approach such try-again-totalized coalgebras as behavioural
counterparts of maybe-transposed-functions [3], thus extending totalization or
transposition from the algebraic to the coalgebraic context.

We show that a refinement relationship holds between the original and the
totalized components which can be expressed in the coalgebraic approach to
component refinement developed by [4,5]. In particular, the transposition of
partial components arises as an example of backward refinement — a relation
dual to the generalisation of the more usual case of non determinism reduction
studied in [5]. As an improvement, such a reasoning is carried out in the
pointfree binary relation calculus [6,7], which is shown to compare favourably
— for its elegance and effectiveness — with respect to its more widespread
pointwise counterpart. Thanks to such agile notation and calculus, this paper
provides calculations which come in support of the refinement preorders whose
introduction in [4,5] was only intuitively motivated. Therefore, another main
contribution of this paper is a significant extension and re-working of such an
approach to component refinement.

As part of the pragmatic aims of this research, we address the bisimilar-
ity between every such a shielded component and its factorization into two
coalgebraic components — the original one and an added interface — which
cooperate in a client-server style. This can be regarded as an abstract formu-

2

class stackObj

types

public Stack = seq of A ;

public A = token ;

instance variables

stack : Stack := [];

operations

public PUSH : A ==> ()

PUSH(a) == stack := [a] ^ stack;

public POP : () ==> A

POP() == def r = hd stack

in (stack := tl stack;

return r)

pre stack <> [];

end stackObj

Fig. 1. Vdm++ model of a stack

lation of the Seeheim principle [8] (also known as the separation principle)
which is consensual in up-to-date interactive software design.

Paper structure. The section which follows introduces the notion of a partial
component and how it does arise in practice. Partial component transposing
and the refinement relationship between partial and transposed components is
presented in section 3. Once the underlying theory of coalgebraic refinement is
given in section 4, the proof of the main result of the paper is given in section
5. The bisimilarity between every transposed component and its factorization
into two coalgebraic components (client and server) is the main subject of
section 6, which paves the way to the conclusions and pointers to future work.

2 What is a Partial Component?

Partial modelling. In the tradition of mathematical modelling in physics and
other branches of science, constructive formal specification methods, such as
Vdm [9,10], Z [11] or B [12], are based on the notion of a software formal
model. This is understood as a state-based abstract machine which models
how a system reacts to input stimuli, changes state and yields output. Paying
tribute to the nowadays widespread object-oriented programming principles,
formal models in specification languages such as e.g. Vdm++ [13] and Z++

[14] are encapsulated into abstract objects. These offer a number of services
— e.g. PUSH and POP in the stack model of Fig. 1, written in Vdm++ notation
— through a public interface which provides limited access to a private state
space — e.g. instance variable stack in the same model.

3

class unOrdCol

types

public Collection = set of A ;

public A = token ;

instance variables

col : Collection := {};

operations

public PUT : A ==> ()

PUT(a) == col := {a} union col;

public GET : () ==> A

GET() == let r in set col

in (col := col \ {r};

return r)

pre col <> {};

end unOrdCol

Fig. 2. Vdm++ model of a collection

Regarded as state-based, dynamic systems, such formal models (objects, ab-
stract machines or components) belong to the broad group of computing phe-
nomena whose semantics are essentially observational, in the sense that all
that can be traced of their evolution is their interaction with the environ-
ment. Coalgebras [15], ie. functions of type α : TU ←− U for T a parametric
datatype, appear as suitable mathematical devices in explaining the semantics
of such formal state-based models.

Coalgebra theory has been subject to recent, remarkable developments [15].
References [16,17] present a coalgebraic approach to the semantics of state-
based software components under the components as coalgebras slogan. Let
us see the “approach at work” by (constructively) deriving a coalgebraic se-
mantics for class stackObj of Figure 1.

We first note that the semantics of PUSH is a function of type

[[PUSH]] : S × 1←− S × A

where S abbreviates Stack and 1 (the singleton datatype) abbreviates () in
Vdm++. Similarly, the semantics of POP will exhibit signature

[[POP]] : S × A←− S × 1

However, [[POP]] is not a (total) function, because of its precondition. We should
thus interpret the arrows above as denoting partial functions.

In practice, reactive partiality is more the rule than the exception in formal
modelling. But there is more. Fig. 2 models an unordered collection in terms

4

of finite sets. The two models (stackObj and unOrdCol) are similar in shape.
However, method GET (the counterpart of POP in Fig. 1) is not only partial
but also nondeterministic, since sets are unordered and there is no such notion
as the first or last element of a set. All in all, the arrows above have to be
regarded as denoting binary relations, a concept which encompasses both total
and partial functions as special cases [7].

We now focus on unOrdCol, whose nondeterministic semantics is more inter-
esting than that of stackObj. The idea of packaging methods PUT and GET

together in a public interface is nicely captured by summing up the two rela-
tions which capture their semantics,

[[PUT]] + [[GET]] : S × 1 + S × A←− S × A+ S × 1 (1)

where + denotes relational coproduct (vulg. datatype sum) and S is kept as
the symbol denoting the model’s internal state. Thanks to the distributivity
of × through +, we can factor out S, leading to 1

dr◦ · ([[PUT]] + [[GET]]) · dr : S × (1 + A)←− S × (A+ 1) (2)

where dr is the distribute-right isomorphism and dr◦ denotes its converse 2 .
Knowing that every binary relation R can be converted into a (set-valued)
function ΛR via the power-transpose isomorphism [7,3] defined by

f = Λ R ≡ (bRa ≡ b ∈ f a)

for all R : B ←− A and f : PB ←− A (PB denotes the set of all subsets of
B), we convert relation dr◦ · ([[PUT]] + [[GET]]) · dr into function

Λ(dr◦ · ([[PUT]] + [[GET]]) · dr) : P(S × (1 + A))←− S × (A + 1)

which — finally — can be curried into coalgebra

Λ(dr◦ · ([[PUT]] + [[GET]]) · dr) : P(S × (1 + A))(A+1)

︸ ︷︷ ︸
TS

←− S

where the bar over the coalgebra denotes the currying isomorphism which is

1 In the sequel, both functional and relational composition will be denoted by the
same symbol · given that the former is just a special case of the latter. Relational
composition is defined in the usual way: b(R · S)c holds wherever there exists some
mediating a such that bRa∧aSc holds. In the case of functions, say f and g instead
of R and S, b(f · g)c equivales b = f(g c). Here — and elsewhere in this paper
— we follow the fairly common notation standard of denoting (total) functions by
lowercase letters (f , g, etc) and all other relations by uppercase letters (e.g. R, S).
2 In general, the converse R◦ of binary relation R is such that bRa equivales aR◦b.

5

such that, given binary function g, equivalence

f = g ≡ 〈∀ a, b : : (f a)b = g(a, b)〉

holds.

In general, the semantics of a (nondeterministic) component p hiding internal
state Up and offering n methods Mi=1,n of public interface Mi : Oi ←− Ii will
be captured by coalgebra

Λ(dr◦ · (
n∑

i=1

[[Mi]]) · dr)

mapping Up into TUp = P(Up × O)I , where O abbreviates
∑n
i=1 Oi, I abbre-

viates
∑n
i=1 Ii and (for simplicity) dr is assumed extended to the n-ary case.

Going generic. The above construction raises two observations. First, ini-
tialization statements such as col : Collection := {} in Fig. 2 have not
been accounted for so far. They provide a specification of the initial value of
the component’s state, i.e., the seed from which all subsequent behaviour of
the underlying coalgebra will be computed.

Second, a truly generic model for software components should not restrict
itself to nondeterministic behaviour, as captured by the powerset construction
above. Other components will exhibit different behaviour models: as shown
in [18,16,17], genericity is achieved by replacing the powerset monad by an
arbitrary strong monad 3 B. In this paper our attention will be focused on
behavioural models B which incorporate a notion of possible failure, therefore
modelling what we understand by a partial component. Such is trivially the
case of the maybe monad. However, also note that PA ∼= 1+P+A, where P+A
is the set of all nonempty subsets of A.

Thus we reach the generic notion of a component p with input interface I
and output interface O, denoted by p : O ←− I, as follows: it is specified as

3 A strong monad is a monad 〈B, η, µ〉 where B is a strong functor and both η
and µ are strong natural transformations. B being strong means there exist natural
transformations τB

r : B(Id × −) ⇐= B × − and τB
l : B(− × Id) ⇐= − × B called

the right and left strength, respectively, subject to certain conditions. Their effect
is to distribute the free variable values in the context “−” along functor B. Strength
τr, followed by τl maps BI × BJ to BB(I × J), which can, then, be flattened to
B(I × J) via µ. In most cases, however, the order of application is relevant for the
outcome. The Kleisli composition of the right with the left strength, gives rise to a
natural transformation whose component on objects I and J is given by δrI,J =
τrI,J •τlBI,J Dually, δlI,J = τlI,J •τrI,BJ . Such transformations specify how the monad
distributes over product and, therefore, represent a sort of sequential composition of
B-computations. Whenever δr and δl coincide, the monad is said to be commutative.

6

a (pointed) coalgebra in Set

〈up ∈ Up, ap : B(Up × O)I ←− Up〉 (3)

where point up is the ‘initial’ or ‘seed’ state. Therefore, the computation of
an action will not simply produce an output and a continuation state, but
a B-structure of such pairs. The monadic structure provides tools to handle
such computations: unit (η) and multiplication (µ) provide, respectively, a
value embedding and a ‘flatten’ operation to reduce nested behavioural an-
notations. Strength, either in its right (τr) or left (τl) version, caters for context
information. Also notice that both I and O can be any datatype and are there-
fore not restricted to the datatype sums which arise in components built from
model-oriented specifications, as illustrated above.

A component calculus. Regarding software components as pointed coalgebras
parametric on a behaviour model B, gives rise to a rich semantic framework
where components become arrows in a (bicategorical) universe Cp whose ob-
jects are sets, providing types to input/output parameters (the components’
interfaces). Component morphisms h : q ←− p, which impose a categorical
structure on the corresponding homsets, amount basically to coalgebra morph-
isms. Such a framework was proposed in a series of papers beginning with [18],
in the context of which a component calculus [16,17] was developed also in a
generic way, i.e., parametric on monad B.

This calculus involves component assembly patterns such as pipeline (;) and
three tensors capturing, respectively, external choice (�), parallel (�) and
concurrent (�) composition. For the purpose of this paper, it is enough to
understand the semantics of pipelining and external choice. Let p : O ←− I,
q : R ←− J and r : R ←− O be components. Then p ; r : R ←− I is a
component whose coalgebra ap;r : B(Up × Ur × R)←− Up × Ur × I sequences
the behaviour of ap and ar by feeding the latter with the output of the former,
while the monadic effect is propagated (see Fig. 3). Concerning external choice,
when interacting with p� q : O+R←− I+J , the environment chooses either
to input a value of type I or of type J , which triggers the corresponding
component (p or q, respectively), producing the relevant output (see Fig. 3).
The formal definition of the underlying coalgebra of type ap�q : B(Up × Uq ×
(O + R)) ←− Up × Uq × (I + J) which captures this behaviour can be found
in [16].

Generalised interaction is catered through a sort of ‘feedback’ mechanism con-
necting a specified subset of outputs to a subset of inputs of the same com-
ponent. Therefore, arbitrary communication between components is achieved
by first aggregating them via one of the tensors and then selecting the input
and output points to be connected by the feedback operator. A particular case
of feedback will be presented in section 6.

7

Pipeline p ; r :
I

��

O

��
p

��

; r

��
O R

Choice p� q :
I
��

+ J
��

p

��

� q

��
O + R

Fig. 3. Two combinators of the component algebra

Finally, component adaptation is captured by a wrapping combinator and
function lifting [16], a combinator which promotes a function f : B ←− A
to component pfq : B ←− A whose coalgebra (over 1, the singleton type) is
defined by apfq = η · (id × f). This allows for component composition with
arbitrary functions.

3 Transposing Partial Components

Once partial operations (such as POP or GET in the examples above) are offered
by a given component, its overall behaviour will certainly include the possib-
ility of failure. At component level, failure of a particular operation leads to
the whole component collapsing. Moreover, as any other behavioural effect,
failure propagates through any component network to which the failing com-
ponent is Kleisli-composed (which is always the case because all component
combinators in [16,17] involve forms of Kleisli-like composition).

However, as hinted earlier on in this paper, a more “positive” approach to
behavioural partiality would be a try-again behaviour rather than overall col-
lapse. This section discusses how a partial component, in the sense of defin-
ition 3.1 below, can be transformed (or transposed) into a component with
identical behaviour but for the possible failure cases, which are transformed
into stuttering states: the transposed component will wait and remain accept-
ing all invalid inputs while making no move, until a valid input is effectively
processed.

Definition 3.1 A component p such as given by (3) is said to be partial
whenever the associated behaviour model B can be decomposed in a maybe
shape,

B ∼= B+ + 1 (4)

8

as witnessed by a given natural isomorphism ξB : B+ + 1←− B. We denote by
Rp the simple relation (vulg. partial function) of type B+(Up×O)←− Up× I,
of which ap is the maybe-transpose [3], that is, ap = Γ Rp and Rp = i◦1 · ap,
where isomorphism Γ is uniquely defined by universal property

f = Γ R ≡ R = i◦1 · f (5)

For instance, B+ is the identity monad Id for B the “Maybe” monad and the
non empty powerset monad P+ for B = P.

Let us now address the transposition of a partial component p into a try-again
(total) one, to be denoted by p ↑. Let us start with an example. Suppose p
is a non-determinsitic component whose behaviour is expressed by powerset-
coalgebra ap. Its expected try-again counterpart will be

ap↑〈u, i〉 = if ap〈u, i〉 = {}
then {〈u,Nothing〉}
else {〈u′, Just o〉 | 〈u′, o〉 ∈ ap〈u, i〉}

In general, the dynamics of p is pre-composed with the diagonal function
M a = 〈a, a〉 which replicates the current value of the state-space. Whenever
ap fails, p is able to recover from such a value. Formally,

Definition 3.2 Given partial component p : O ←− I, its try-again transpose
p↑: O+1←− I is defined by a new coalgebra over the same state space whose
dynamics is given by 4

ap↑ = Up × I M×id−−−→ (Up × Up)× I a−−−→ Up × (Up × I)
id×ap−−−→ Up × B(Up ×O)
id×ξB−−−→ Up × (B+(Up ×O) + 1)

dr−−−→ Up × B+(Up ×O) + Up × 1
π2+id−−−→ B+(Up × O) + Up × 1
B+(id×i1)+id×i2−−−−−−−−−−→ B+(Up × (O + 1)) + Up × (O + 1)
[i1,ξB·ηB]−−−−−→ B+(Up × (O + 1)) + 1

ξ◦B−−−→ B(Up × (O + 1))

Note in this definition the role of dr in distributing the initial state across
the maybe-shape, later to be kept (via π2 + id, where π2 denotes the right
projection of product) only on the failure side of this shape. The second-to-
last step involves construction [R, S] (read either R or S) which is given by

4 Further to dr already introduced in this paper, the second step in the composi-
tion chain involves isomorphism a which witnesses product association to the right.
Function id is the identity function such that id a = a for all a.

9

closed formula

[R, S] = (R · i◦1) ∪ (S · i◦2) (6)

where i1 and i2 are the coproduct injections.

The signature extension, from p : O ←− I to p↑: O + 1←− I, resembles the
maybe-transpose of partial functions [3]. At behaviour level, output of type 1
bears the informal meaning please try again. In a sense, behavioural partiality
is absorbed by an extension towards data-partiality at the (output) data level.

In general, p and p ↑ are not bisimilar. Regarded as (generalised) trans-
ition systems, however, the underlying coalgebras have the same structure
but for the presence, in the latter, of reflexive arrows at every partial state,
i.e., every state at which failure is a possibility at least for an argument. These
correspond, as one would expect, to the try-again extra-behavioural cycles.
Formally,

Lemma 3.1 Component p ↑: O + 1 ←− I is a backward refinement of p :
O ←− I, with respect to the structural failure refinement order ≤FT of [4].

The statement of this lemma calls for further explanation. First of all, it makes
use of a notion of behaviour refinement proposed in a previous paper, [4], in
which refinement is captured by the existence of some form of weak coalgebra
morphism (just as bisimulation amounts to the existence of a standard morph-
ism) with respect to a particular refinement preorder. The latter, on its turn,
exploits the structure of the coalgebra dynamics in a number of different ways
(leading, correspondingly, to a number of refinement preorders). Finally, such
preorders can be used in two dual ways referred to in [4] as forward or back-
ward refinement. Reference [4] is further expanded into a journal version [5] in
which the component calculus of [16,17] is extended with a number of generic
refinement laws. Both [4] and [5] are, however, mainly concerned with forward
refinement, which generalises the usual axis of non determinism reduction in
a functorial way.

As we shall show in the sequel, backward refinement corresponds to a sim-
ilar functorial generalisation of definition increase and turns out to be the
right way of characterising the relationship between p and p ↑ and proving
lemma 3.1. First, however, we have to recall the refinement theory in which
this lemma lives. Such is the purpose of the following section which not only
collects the main concepts from [4], but also reframes its main constructions
in a more general pointfree way. Such a reconstruction, on its turn, not only
largely increases calculational power, but also provides a formal justification
of some definitions which were in [4] only intuitively motivated. This, which
we regard as a main contribution of the present paper, can be appreciated in
the (relational) proof of lemma 3.1, which is deferred to section 5.

10

4 Behavioural Refinement by Pointfree Calculation

The starting point of [4] is that, just as transition systems can be coded back as
coalgebras, any coalgebra 〈U, α : TU ←− U〉 specifies a (T-shaped) transition
structure over its carrier U . For extended polynomial Set endofunctors 5 such
a structure may be expressed as a binary relation α←−: U ←− U , defined in
terms of the structural membership relation ∈T: U ←− T U ,

u′ α←− u ≡ u′ ∈T α u

which can be written in less symbols as

α←− = ∈T · α (7)

at pointfree level. Relation ∈T is defined by induction on the structure of
polynomial T as follows:

∈Id = id (8)

∈K = ⊥ (9)

∈T1×T2 = (∈T1 · π1) ∪ (∈T2 · π2) (10)

∈T1+T2 = [∈T1 ,∈T2] (11)

∈T1·T2 = ∈T2 · ∈T1 (12)

∈TK =
⋃

k∈K
∈T · βk (where βkf = f k) (13)

∈P = ∈ (set-theoretic membership) (14)

Some comments on notation follow. Since id is the identity function and ⊥ is
the empty relation, x ∈Id y iff x = y is the pointwise counterpart of the first
clause and x ∈K y iff false is that of the second. The pointwise expansion of
the third clause is x∈T1×T2 y iff x∈T1 π1 y ∨ x∈T2 π2 y, where π1, π2 dentote
the left and right projections of relational product. Formula (6) and rule

b(f ◦ ·R · g)a iff (f b)R(g a) (15)

is useful in the pointwise-pointfree conversion of the fourth clause into

x ∈T1+T2 y iff

y = i1 y

′ ⇒ x ∈T1 y
′

y = i2 y
′ ⇒ x ∈T2 y

′

5 This is the class inductively defined as the least collection of functors containing
the identity Id and constant functors K for every object K in the category, closed
by functor composition and finite application of product, coproduct, covariant ex-
ponential and finite powerset functors.

11

The fifth clause is self-explanatory. Finally, the exponentials clause generalizes
the third, and the last clause brings in conventional set-theoretic membership.

Relation ∈T is actually an instance of datatype membership defined by Hoogen-
dijk [19] as a Galois connection, which entails two results which are of interest
to this paper. First, that ∈T satisfies the following naturality condition

h · ∈T = ∈T · T h (16)

for any function h. Second, that ∈T can be further extended to the construction
of recursive datatypes. In brief, this goes as follows: let TA be the type functor
induced by a given base polynomial bifunctor B , that is, in : TA←− B(A,TA)
is an isomorphism. Let ∈1,∈2 be the two memberships associated to the two
places of bifunctor B, that is, ∈1: X ←− B(X, Y) and ∈2: Y ←− B(X, Y).
Relation Atroot = ∈1 · in◦ (of type Atroot : A ←− TA can be understood as
checking whether a particular a of type A can be found at root-level of a given
“tree” t of type TA, while Branch : TA←− TA, defined by Branch = ∈2 ·in◦,
checks whether some other t′ is a branch of t. Rather elegantly, Hoogendijk
calculates type functor membership, ∈T: A←− TA, as follows:

∈T= Atroot ·Branch∗ (17)

where Branch∗ denotes the reflexive, transitive closure of Branch. So, a ∈T t
means that a can found at the root of either t or any of its branches, at any
depth.

4.1 Forward/backward refinement

The dynamics of a component p : O ←− I is based on functor B(Id × O)I .
Therefore a possible (and intuitive) way of regarding component p as a beha-
vioural refinement of some other component q : O ←− I is to consider that
p-transitions are simply preserved in q. For non deterministic components this
is understood simply as set inclusion. But one may also want to consider addi-
tional restrictions. For example, to stipulate that if p has no transitions from a
given state, q should also have no transitions from the corresponding state(s).
Or one may adopt the dual point of view requiring transition reflection in-
stead of preservation. In any case the basic question remains: how can such a
refinement situation be identified?

In data refinement there is a ‘recipe’ to identify a refinement situation: look for
an abstraction function to witness it. In other words: look for a morphism in
the relevant category, from the ‘concrete’ to the ‘abstract’ model such that the
latter can be recovered from the former up to a suitable notion of equivalence,
though, typically, not in a unique way.

12

In our components’ framework, however, things do not work this way. The
reason is obvious: component morphisms are (seed preserving) coalgebra mor-
phisms which are known (see e.g. [15]) to entail bisimilarity. Therefore we have
to look for a somewhat weaker notion of a morphism between coalgebras.

Recall that a T-coalgebra morphism h : α ←− β is a function from the state
space of β to that of α such that

Th · β = α · h (18)

holds. Regarding β and α as (generalised) transition systems, equation (18)
becomes relational equality

h · β←− = α←− ·h (19)

(thanks to (7), (16) and the fact that (∈T·) is an isomorphism [3]), i.e. the
conjunction of inclusions

h · β←− ⊆ α←− ·h (20)

α←− ·h ⊆ h · β←− (21)

By shunting 6 , inclusion (20) is equivalent to

β←− ⊆ h◦ · α←− ·h (22)

Inequalities (22) and (21) take a more familiar shape once variables are intro-
duced:

v′ β←− v ⇒ h v′ α←− h v (23)

u′ α←− h v ⇒ ∃v′∈V . v′ β←− v ∧ u′ = h v′ (24)

They jointly state that, not only β dynamics, as represented by the induced
transition relation, is preserved by h (20, 23), but also α dynamics is reflected
back over the same h (21,24). Is it possible to weaken the morphism definition
to capture only one of these aspects?

The answer is yes and resorts to the notion of a preorder ≤ on a Set endo-
functor T. This is defined in [21] as a functor ≤ which makes the following
diagram commute:

PreOrd
��

(TV,≤TV)_
��

Set T
//

≤ 66lllllll
Set e.g. V

� //+
55kkkkkkk

TV

6 In the relational calculus [20], Galois connections f · R ⊆ S ≡ R ⊆ f ◦ · S and
R · f◦ ⊆ S ≡ R ⊆ S · f , involving function f and relations R and S, are known as
shunting rules.

13

This means that for any function h : U ←− V , Th preserves the order, i.e.

x1 ≤TV x2 ⇒ (Th) x1 ≤TU (Th) x2 (25)

or, in a pointfree formulation,

(Th)· ≤TV ⊆ ≤TU · (T h) (26)

In the definition which follows subscripts are dropped, e.g. ≤ instead of ≤TV ,
for notation economy. Moreover, we denote by

.
≤ the pointwise lifting of pre-

order ≤ to the functional level, i.e.

f
.
≤ g ≡ 〈∀ x : : f x ≤ g x〉 (27)

which can easily be shown to have the following pointfree-equivalent:

f
.
≤ g ≡ f ⊆≤ ·g (28)

Definition 4.1 Let T be an extended polynomial functor on Set and consider
two T-coalgebras β : TV ←− V and α : TU ←− U . A forward morphism
h : α←− β with respect to a preorder ≤, is a function from V to U such that

T h · β .
≤ α · h

Dually, h is said to be a backwards morphism if

α · h .
≤ T h · β

The following lemma, a pointfree proof of which can be found in [5], shows
that such morphisms compose and can be taken as witnesses of refinement
situations:

Lemma 4.1 For T an endofunctor in Set, T-coalgebras and forward (respect-
ively, backward) morphisms define a category.

Such a split of a coalgebra morphism into two conditions, makes it possible
to capture separately transition preservation and reflection. Lemma 4.2 be-
low will state that forward morphisms preserve transitions whereas backwards
morphisms reflect them. To prove this, however, the following extra condition
has to be imposed on preorder ≤ to express its compatibility with the mem-
bership relation: for all x ∈ X and x1, x2 ∈ TX,

x ∈T x1 ∧ x1 ≤ x2 ⇒ x ∈T x2 (29)

14

or, again in a pointfree formulation,

∈T · ≤ ⊆ ∈T (30)

A preorder ≤ on an endofunctor T satisfying inclusion (30) will be referred
to, in the sequel, as a refinement preorder. Then,

Lemma 4.2 Let T be an extended polynomial functor in Set, and β and α
two T-coalgebras as above. Let β ←− and α ←− denote the corresponding
transition relations. A backward (respectively, forward) morphism h : α←− β
reflects (respectively, preserves) such transition relations.

PROOF. Let h be a backward morphism. Transition reflection, defined by
equation (21), is established as follows:

α←− ·h
= { definition (7) }
∈T ·α · h
⊆ { h backwards entails α · h ⊆≤ ·Th · β, monotonicity }
∈T · ≤ ·Th · β
⊆ { compatibility with ∈T (30), monotonicity }
∈T ·Th · β
≡ { ∈T natural (16) }
h · ∈T ·β

= { definition (7) }
h · β←−

The forward case is documented in [5].

2

The existence of a backward (forward) morphism connecting two compon-
ents p and q (that is, a morphism between coalgebras ap and aq) witnesses
a refinement situation whose symmetric closure coincides, as expected, with
bisimulation 7 and define behaviour refinement by the existence of a backward
morphism up to bisimulation. Formally,

Definition 4.2 Let T be the behaviour shape of components q = 〈uq, aq〉 and
p = 〈up, ap〉. Then q is said to be a backward refinement of p — written

7 A similar study is made in [5] on forward refinement.

15

p ≤T q — if there is a (seed preserving) backward morphism p qhoo that
is, such that

h uq = up

ap · h
.
≤T Th · aq

Subscript T is often dropped wherever clear from the context, as in e.g. the
following obvious fact: p ∼ q⇒ p ≤ q.

4.2 Calculating refinement preorders

The exact meaning of refinement assertion p ≤ q above depends, of course, on
the concrete refinement preorder adopted. But what do we know about such
preorders? Condition (30) equivales

≤ ⊆ ∈T \ ∈T (31)

by direct application of the Galois connection which defines relational division,

R ·X ⊆ S ≡ X ⊆ R \ S (32)

from which its pointwise meaning x (R \S) z ≡ 〈∀ y : : yRx ⇒ ySz〉 can
be inferred [6].

Clearly, (31) provides an upper bound for refinement preorders, the lower
bound being id, the smallest preorder. It is well known (see e.g., [19,3]) that
relation ∈T \ ∈T corresponds to the lifting of ∈T to (structural) inclusion, i.e.,

x (∈T \ ∈T) y ≡ 〈∀ e : e ∈T x : e ∈T y〉 (33)

Clearly, ∈T \ ∈T always is a preorder 8 . By (31), it is the largest refinement
preorder. For T = Id, (31) has only one solution which is easy to calculate:

≤Id ⊆ ∈Id \ ∈Id

≡ { (32) }
∈Id · ≤Id ⊆ ∈Id

≡ { membership definition ∈Id= id }
≤Id ⊆ id

8 Reflexivity: R \ S is reflexive iff R ⊆ S; transitivity: R \ S is transitive wherever
S ⊆ R.

16

≡ { as a preorder, ≤Id is reflexive }
≤Id = id

Concerning case T = K, ∈K \ ∈K= > (where >, the “topmost” relation of
its type, is such that x>y holds for any x, y), since ∈K= ⊥. In our com-
ponent model, however, such a preorder on the constant functor would make
refinement based on ∈T \ ∈T blind to the outputs produced. This suggests
an additional requirement on refinement preorders for Cp components: their
definition on a constant functor K must be equality on set K, i.e., ≤K = id,
so as to leave transitions with different O-labels related.

In these two cases, we have chosen the unique and the smallest solutions to
(31), respectively. For all other cases, there is a lot more freedom. Let us
consider them in sequence.

4.2.1 Products

As above, we start by calculating upper-bound ∈T1×T2 \ ∈T1×T2 :

∈T1×T2 \ ∈T1×T2

= { (10) }
(∈T1 · π1 ∪ ∈T2 · π2) \ ∈T1×T2

= { (R ∪ S) \ T = (R \ T) ∩ (S \ T) }
(∈T1 · π1 \ ∈T1×T2) ∩ (∈T2 · π2 \ ∈T1×T2)

= { (R · f) \ S = f◦ · (R \ S) }
π◦1 · (∈T1 \ ∈T1×T2) ∩ π◦2 · (∈T2 \ ∈T1×T2)

= { introduce combinator 〈R,S〉 = π◦1 ·R ∩ π◦2 · S }
〈∈T1 \ ∈T1×T2,∈T2 \ ∈T1×T2〉

Note that ∈T1 · π1 ⊆ ∈T1×T2 holds (similarly for T2, π2). From this we infer:

∈T1 · π1 ⊆ ∈T1×T2 ∧ ∈T2 · π2 ⊆ ∈T1×T2

⇒ { monotonicity of upper adjoint (R\) in (32) }
∈T1 \ (∈T1 · π1) ⊆ ∈T1 \ (∈T1×T2) ∧ ∈T2 \ (∈T2 · π2) ⊆ ∈T2 \ (∈T1×T2)

≡ { R \ (S · f) = (R \ S) · f (twice) }
(∈T1 \ ∈T1) · π1 ⊆ ∈T1 \ (∈T1×T2) ∧ (∈T2 \ ∈T2) · π2 ⊆ ∈T2 \ (∈T1×T2)

⇒ { ≤Ti
⊆ (∈Ti

\ ∈Ti
), for i := 1, 2 }

≤T1 · π1 ⊆ ∈T1 \ (∈T1×T2) ∧ ≤T2 · π2 ⊆ ∈T2 \ (∈T1×T2)

⇒ { monotonicity of 〈R, S〉 and previous calculation }
〈≤T1 · π1,≤T2 · π2〉 ⊆ ∈T1×T2 \ ∈T1×T2

17

≡ { introduce relational product R × S = 〈R · π1, S · π2〉 }
≤T1 ×≤T2 ⊆ ∈T1×T2 \ ∈T1×T2

In summary, this confirms that definition

≤T1×T2 ,≤T1 ×≤T2 (34)

adopted in [5] is indeed a refinement preorder (the refinement preorder of a
product is the product of its factors’ refinements preorders).

4.2.2 Coproducts

By analogy with the above, we follow [5] in defining

≤T1+T2 ,≤T1 +≤T2 (35)

but add the verification that such a sum of two membership-compatible pre-
orders is membership-compatible:

≤T1 +≤T2 ⊆ (∈T1+T2 \ ∈T1+T2)

≡ { Galois (32) }
∈T1+T2 · (≤T1 +≤T2) ⊆ ∈T1+T2

≡ { membership definition }
[∈T1 ,∈T2] · (≤T1 +≤T2) ⊆ [∈T1 ,∈T2]

≡ { +-fusion }
[∈T1 ·≤T1 ,∈T2 ·≤T2] ⊆ [∈T1 ,∈T2]

⇐ { ‘either’ is monotonic }
∈T1 ·≤T1 ⊆ ∈T1 ∧ ∈T2 ·≤T2 ⊆ ∈T2

≡ { Galois (32) twice }
≤T1 ⊆ ∈T1 \ ∈T1 ∧ ≤T2 ⊆ ∈T2 \ ∈T2

4.2.3 Functor composition

We have ∈T1·T2 = ∈T2 · ∈T1 , recall (12). Calculation of ≤T1·T2 proceeds by
indirect inclusion:

18

X ⊆ ∈T1·T2 \ ∈T1·T2

≡ { (12) }

X ⊆ (∈T2 · ∈T1) \ ∈T1·T2

≡ { Galois (32)}

(∈T2 · ∈T1) ·X ⊆ ∈T1·T2

≡ { Galois and (12) }

∈T1 ·X ⊆ ∈T2 \ (∈T2 · ∈T1)

⇐ { property (R \ S) · T ⊆ R \ (S · T) }

∈T1 ·X ⊆ (∈T2 \ ∈T2) · ∈T1

⇐ { assume ≤T2
⊆ ∈T2

\ ∈T2
}

X ⊆ ∈T1 \ (≤T2 · ∈T1)

:: { define ≤T1·T2
, ∈T1

\ (≤T2
· ∈T1

) ; indirection }

≤T1·T2 ⊆ ∈T1·T2 \ ∈T1·T2

We have shown that, should ≤T2 be membership-compatible, than so is 9

≤T1·T2 ,∈T1 \ (≤T2 · ∈T1) (36)

4.2.4 Exponentials

Calculation of ≤TK proceeds by indirect inclusion:

X ⊆ (∈TK \ ∈TK)

≡ { (13) ; (R ∪ S) \ T = (R \ T) ∩ (S \ T) }

X ⊆ ⋂
k∈K((∈T · βk) \ (

⋃
k′∈K ∈T · β ′k))

⇐ { choose k′ := k }

X ⊆ ⋂
k∈K((∈T · βk) \ (∈T · βk))

≡ { (R · f) \ S = f◦ · (R \ S) and R \ (S · f) = (R \ S) · f , for f := βk }

9 Another — much stronger — choice could have been

≤T1·T2 , (∈T1 \ ≤T2) · ∈T1

19

X ⊆ ⋂
k∈K(β◦k · (∈T \ ∈T) · βk)

⇐ { assume ≤T ⊆ ∈T \ ∈T }

X ⊆ ⋂
k∈K(β◦k ·≤T · βk)

≡ { since f
.

≤T g ≡ 〈∀ k ∈ K : : f(β◦
k
·≤T · βk)g〉 }

X ⊆
.
≤T

So,
.
≤T is membership-compatible wherever ≤T is membership-compatible.

Thus the definition

≤TK ,
.
≤T (37)

chosen in [4].

The preorder definitions so far enable the following result.

Lemma 4.3 ≤T= id, for every polynomial functor TX =
∑n
i=0Ci ×X i.

PROOF.

≤∑n

i=0
Ci×Xi

= { single out constant functor }
≤C0 + ≤∑n

i=1
Ci×Xi

= { choice ≤K= id and (35) }

id+
n∑

i=1

≤Ci×Xi

= { (34) }

id+
n∑

i=1

(≤Ci × ≤Xi)

= { as above and (37) }

id+
n∑

i=1

(id×
.
≤X)

= { .
id = id and ×,+-reflection }

id

4.2.5 Powerset

As elsewhere [3,4], we define ≤P as the maximum set-membership-compatible
preorder, that is, set inclusion.

20

4.2.6 Recursive datatypes

Finally, let us solve (31) for recursive membership (17):

≤ ⊆ ∈T \ ∈T

≡ { (17) twice and (32) }
Atroot ·Branch∗· ≤ ⊆ Atroot ·Branch∗

⇐ { monotonicity of composition }
Branch∗· ≤ ⊆ Branch∗

Clearly, ≤ , Branch∗ is a solution to the version of (31) just above: by
substitution, one gets Branch∗ · Branch∗ ⊆ Branch∗, which holds since
Branch∗ is transitive. Altogether, by chosing this solution,

≤T , Branch∗ (38)

one obtains a quite obvious understanding of recursive datatype inclusion:
t≤Tt

′ holds wherever t is a subtree of t′, at any depth.

4.2.7 Comments

Thanks to the results above, we are now able to easily calculate compound
refinement preorders, as the following calculation of ≤P(Id×O)I shows:

≤P(Id×O)I

= { (37) }
.
≤P·(Id×O)

= { (36) }
.︷ ︸︸ ︷

∈P \(≤(Id×O) · ∈P)

= { Id×O is polynomial }
.

∈P \ ∈P
= { powerset maximal preorder }

.
⊆

All in all, we have justified, by agile pointfree calculation, the following (point-
wise) refinement preorder definitions proposed in [4]:

x≤Id y iff x = y

x≤K y iff x =K y

21

x≤T1×T2 y iff π1 x≤T1 π1 y ∧ π2 x≤T2 π2 y

x≤T1+T2 y iff

x = i1 x

′ ∧ y = i1 y
′ ⇒ x′ ≤T1 y

′

x = i2 x
′ ∧ y = i2 y

′ ⇒ x′ ≤T2 y
′

x≤TK y iff ∀k∈K . x k ≤T y k

x≤PT y iff ∀e∈x∃e′∈y. e≤T e
′

This preorder will be referred to in the sequel as structural inclusion. Note that
forward refinement of non deterministic components based on ≤T captures the
classical notion of non determinism reduction.

However, ≤T is inadequate for partial components, since via ≤T+1 = ≤T + id
refinement would collapse into bisimilarity instead of entailing an increase of
definition on the implementation side. The alternative proposed in [4],

x ≤FT+1 y iff

x = i1 x

′ ∧ y = i1 y
′ ⇒ x′ ≤T y

′

x = i2 ∗ ⇒ true

(where F stands for ‘failure’) adds a maybe clause and should take precedence
over general sum. In order to reason about this alternative, we write it in
pointfree notation:

≤FT+1 , [i1 ·≤T
◦,>]◦ (39)

The proof that this is an upper bound of ≤T+1 is immediate, via converses:

(≤T+1)◦

= { (35) and converses }
≤T
◦ + id

= { relational coproduct }
[i1 ·≤T

◦, i2]

⊆ { i2 ⊆ > }
[i1 ·≤T

◦,>]

= { (39) }
(≤FT+1)◦

That ≤FT+1 is membership-compatible can be proved in a similar way:

≤FT+1 ⊆ ∈T+1 \ ∈T+1

≡ { ∈T+1 = [∈T ,⊥] = ∈T · i◦1 ; Galois (32)}

22

∈T · i◦1 · [i1 ·≤T
◦,>]◦ ⊆ ∈T · i◦1

≡ { converses }

[i1 ·≤T
◦,>] · i1 · ∈T

◦ ⊆ i1 · ∈T
◦

≡ { +-cancellation }

i1 ·≤T
◦ · ∈T

◦ ⊆ i1 · ∈T
◦

≡ { i1 is an injection }

≤T
◦ · ∈T

◦ ⊆ ∈T
◦

≡ { converses ; Galois (32)}

≤T ⊆ ∈T \ ∈T

(Note the equivalence; this is not an implication.)

5 Proof of Transposition as Backward Refinement

We are now ready to carry out the proof of lemma 3.1. As explained in [4],
behaviour refinement can only be discussed between components with the
same interface. Therefore, for p to be compared with p↑ it needs to be post-
composed with a suitable embedding to extend its output interface from O to
O + 1. In this way, lemma 3.1 is restated as refinement inequation

p ; pi1q ≤FT p↑ (40)

whose likeness to its maybe-transpose counterpart

i1 ·R ⊆ Γ R

arising from (5) is worth mentioning. Following definition 4.2, (40) is estab-
lished by finding a morphism h such that

ap;pi1q · h
.

≤FT Th · ap↑

holds for T X = B(X × (O + 1))I . Knowing that the state space of both
components is the same, we choose h = id. Than, thanks to (37) and (A.3),
what we have to prove reduces to

ap;pi1q

.︷ ︸︸ ︷
≤FB(×(O+1)) ap↑

23

cf. diagram

B(Up × (O + 1)) Up × I
ap;pi1qoo

B(Up × (O + 1))

B(id×(id+id))

OO

Up × I
id

OO

ap↑
oo

or

ξB · ap;pi1q
.

≤FB+(×(O+1))+1 ξB · ap↑
in order to bring the ‘failure’ version of the preorder into play. Recall that
ap;pi1q = B(id× i1) ·ap and definition 3.2. For notation economy, we factor the
(long) chained composition which defines ap↑ as follows

ap↑= ξ◦B · [i1, ξB · ηB] · (B+(id× i1) + (id× i2)) · a′ (41)

a′= (π2 + id) · dr · a′′ (42)

a′′= (id× ξB · ap) · a · (M ×id) (43)

Then we calculate:

ξB · ap;pi1q
.︷ ︸︸ ︷

≤FB+(×(O+1))+1 ξB · ap↑
≡ { (41) ; ξB · ξ◦B = id }

ξB · B(id× i1) · ap
.︷ ︸︸ ︷

≤FB+(×(O+1))+1 [i1, ξB · ηB] · (B+(id× i1) + (id× i2)) · a′
≡ { ≤F

B+(×(O+1))+1
= [i1· ≤◦B+

,>]◦ thanks to (39) and lemma 4.3}

ξB · B(id× i1) · ap
.︷ ︸︸ ︷

[i1· ≤◦B+
,>]◦ [i1, ξB · ηB] · (B+(id× i1) + (id× i2)) · a′

≡ { (A.2) ; converses ; (28) }
[i1, ξB · ηB] · (B+(id× i1) + (id× i2)) · a′ ⊆ [i1· ≤◦B+

,>] · ξB · B(id× i1) · ap
≡ { dropping subscripts B and B+ ; ξ-natural ; +-absorption (twice) }

[i1 · B+(id× i1), ξ · η · (id× i2)] · a′ ⊆ [i1 ·≤◦ · B+(id× i1),>] · ξ · ap
≡ { definition 3.2 ; a′ = (π2 + id) · dr · a′′ (42) and ξ · ap = π2 · a′′ }

[i1 · B+(id× i1), ξ · η · (id× i2)] · (π2 + id) · dr · a′′ ⊆ [i1· ≤◦ ·B+(id× i1),>] · π2 · a′′
⇐ { monotonicity of (·a′′) }

[i1 · B+(id× i1), ξ · η · (id× i2)] · (π2 + id) · dr ⊆ [i1· ≤◦ ·B+(id× i1),>] · π2

≡ { +-absoption ; shunting on rightmost π2 ; dr◦ = [id× i1, id × i2] ; converses ; +-fusion }
[i1 · B+(id× i1) · π2, ξ · η · (id× i2)] · [i1 · π2, i2 · π2]◦ ⊆ [i1· ≤◦ ·B+(id× i1),>]

≡ { fact [R,S] · [U, V]◦ = R · U◦ ∪ S · V ◦ ; converses }

24

i1 · B+(id× i1) · π2 · π◦2 · i◦1 ∪ ξ · η · (id× i2) · π◦2 · i◦2 ⊆ [i1· ≤◦ ·B+(id× i1),>]

≡ { ∪-universal property}

i1 · B+(id× i1) · π2 · π◦2 · i◦1 ⊆ [i1· ≤◦ ·B+(id× i1),>]

ξ · η · (id× i2) · π◦2 · i◦2 ⊆ [i1· ≤◦ ·B+(id× i1),>]

≡ { shunting over i◦1 and i◦2 ; +-cancellation (twice) ; π2 · π◦2 = id }

i1 · B+(id× i1) ⊆ i1· ≤◦ ·B+(id× i1)

ξ · η · (id× i2) · π◦2 ⊆ >
≡ { i1 is an injection ; every relation is at most > }

B+(id× i1) ⊆ ≤◦ ·B+(id× i1)

≡ { (39) ; ≤ is reflexive }
true

6 Factorization of Transposed Components

The transposition process described so far may be classified as internal or
monolithic in the sense that the coalgebra which encodes p dynamics is mod-
ified. This may be a disadvantage in contexts where component p is offered
by an external source and has to be deployed as-it-is. Typically, as in, e.g.,
Meyer’s design-by-contract approaches [22,23], such components are supplied
with an interface which caters for any usage constraints p might have. From
our modelling point of view, let δp encode such an interface. Component p is
therefore split into a server (the original p) and front-end δp (“δ” after dialog)
which validates inputs and activates the server only when the computation can
be completed successfully. Clearly, the execution of p fails when and only when
activated with pairs 〈u, i〉 not in domRp, the domain of Rp (recall definition
3.1).

For the moment, however, consider the simpler case in which partiality of p
depends only on the input values supplied and let φ : 2 ←− I be the test for
valid inputs as recorded in the interface of component p. Therefore, front-end
δp : I + 1←− I is defined as the lifting pΦq of function

Φ = I
φ?−−−→ I + I

id+!−−−→ I + 1

Using δp we may now specify the try again (total) version of component p by
the following server/front-end aggregation:

δp ; (p� idle) : O + 1←− I (44)

25

I
��
pΦq

��

;

I + 1

(client)

I
��

+ 1
��

p

��

� idle
��

O + 1

(server)

Fig. 4. Client-server “fission” of transposed component (idealized)

where idle = pid1q, the lifting of identity over 1, “absorves” the “invalid” calls
of p (see Fig. 4).

The most general case, however, makes the validity of a component’s call
depend not only on the input supplied but also on the current value of p’s
state variable. Therefore this value must be known to front-end δp, which
means that it should be made available by p as a sort of attribute. It seems
reasonable to assume such an attribute as private, i.e., available only when p
is intended to act as a server accessed through a validation front-end such as
δp. Formally, p must be of shape

p = p′ ; pπ2q : O←− I

where p′ : Up × O ←− I, on completion of a service call, yields not only the
corresponding output value but also the current value of its internal state.
The role of pπ2q is, of course, that of hidding the latter on a stand-alone
deployment of p.

Now, front-end δp has to maintain, as its own state space, the most recent
value of p’s state space and offer an updating service, triggered by an input
of type Up. This adds to its main validation service, which makes use of both
the supplied input (of type I) and the stored state information. Formally,

Definition 6.1 The front-end δp of a component p is another component

δp : I + 1←− I + Up = 〈up ∈ Up, aδp〉

where

aδp = Up × (I + Up)
dr−−−→ (Up × I) + (Up × Up)

test+update−−−−−−→ (Up × (I + 1)) + Up
ηB·[id,〈id,i2·!〉]−−−−−−−−→ B(Up × (I + 1))

Service update is nothing but π2: its purpose is to refresh the front-end state

26

I + Up

��
δp
��

;

I + 1

(client)

I
��

+ 1
��

p′

��

� idle

��
Up × O�Up + 1

(server)

Fig. 5. Client-server “fission” of transposed component

value, whereas

test = Up × I
a·(M×id)−−−−−→ Up × (Up × I)

id×Γ(domRp)−−−−−−−−→ Up × (Up × I + 1)
id×(π2+id)−−−−−−→ Up × (I + 1)

The definition of aδp amounts to the definition of both services, pre- and post-
composed with some housekeeping morphisms, among which ηB is used to
frame the front-end, which is always a purely deterministic component, in the
behaviour model of p so as to ensure correct composition.

Finally, the server/front-end architecture is defined through an aggregation
pattern similar to (44) but with an additional step: on every execution of the
server component, the computed value for its state is fed back to δp, using
the corresponding update service. This is captured by component algebra
expression

(δp ; (p′ � idle))�Up : O + 1←− I (45)

— see also Fig. 5 — in which combinator p�Z, to be defined next, belongs to
the family of feedback operators studied in [16].

Definition 6.2 The feedback combinator is defined, for each object Z, as a
family of functors which is the identity on arrows and maps each component
p : Z ×O + P ←− I + Z to

p�Z: O + P ←− I = 〈up ∈ Up, ap�Z〉

where

ap�Z = Up × I id×i1−−−→ Up × (I + Z)
ap−−−→ B(Up × (Z × O + P))

B((a◦+id)·dr)−−−−−−−→ B((Up × Z)×O) + Up × P)
B((id×i2)×id)+id)−−−−−−−−−−→ B((Up × (I + Z))× O) + Up × P)

27

B((ap×id)+id)−−−−−−−−→ B(B(Up × (Z × O + P))×O) + Up × P)
B((Bπ1×id)+id)−−−−−−−−−→ B(BUp × O + Up × P)
B(τr+η)−−−−→ B(B(Up ×O) + B(Up × P))
B[Bi1,Bi2]−−−−−→ BB((Up × O) + (Up × P))
µ·BBdr◦−−−−→ B(Up × (O + P))

Note that the output fragment Z to be fed back appears in a very general
context — Z × O + P — which explains the amount of housekeeping in the
formal definition.

In section 5 it was shown how transposed component p ↑ can be regarded as
a backward refinement of the original p. Now that two alternative transposes
for p have been introduced, through definitions 3.2 and 6.2, their equivalence
needs to be checked. This is formulated as a bisimulation equation:

Lemma 6.1 Let p : O ←− I be a partial component. Then

p↑ ∼ (δp ; (p′ � idle))�Up (46)

PROOF. In the style of [16,17] this equation is proved by the identification
of a coalgebra morphism h : Up ←− Up × (Up × 1) connecting the state-
spaces of the underlying coalgebras. An obvious choice is h = π1, whereby the
commutativity of the homomorphism square is checked (see details in [24]).

2

7 Conclusions and Future Work

As mentioned in the Introduction, the context for this paper is a generic
framework for composition and refinement of software components regarded
as pointed coalgebras, parametric on a behavioural model [16,17,4]. In such a
framework our intention was to discuss formally how the behaviour of a partial
component could be extended with try-again cycles preventing from eventual
collapse. This lead to an extension of totalization (or transposition) techniques
from the algebraic to the coalgebraic context. Note that the transposition
process is generic in the sense that it can be applied to any component whose
behavioural model, as captured by monad B, does not rule out the possibility
of failure.

28

The transposition process was addressed in this paper as an exercise in coal-
gebraic refinement. In particular it was shown that a backward refinement re-
lation holds between the original partial component and the transposed one.
In general, backward refinement reflects the dynamics of the abstract coal-
gebra back into the refined one and, for an appropriate refinement preorder
(≤F), this seems to capture nicely the envisaged behavioural extension. This
is actually a first published application of backward refinement: in previous
publications (namely [4,5]) all emphasis has been placed on the dual forward
form.

Regarding transposition as a refinement situation entailed the need to re-visit
the theory in [4] in order to formally justify what seemed to be just intuitive
decisions there. This, however, would lead to contrived proofs if performed at
the (pointwise) level at which the refinement preorders are given in [4]. Follow-
ing a similar approach adopted elsewhere in studying conventional operation
refinement [25], it was decided to re-frame the theory of [4] in the pointfree
relational calculus. The authors regard the outcome of this effort — a generic
approach to coalgebraic refinement by pointfree calculation — as a major con-
tribution of this paper. Moreover this paves the way to the systematic study
of the whole spectrum of refinement preorders for coalgebraic models, which,
as shown in this paper, is larger than one would suspect at first sight.

Finally, in section 6, we addressed the factorization (“fission”) of a totalized
coalgebra into two coalgebraic components — the original one and an ad-
ded front-end — which cooperate in a client-server style. In future work we
intend to pursue the study of this sort of factorization which underlies the
well-known “Seeheim” software architectural model. This raises an interest-
ing question, leading to a further level of generalization, on factorization of
software architectures as a formal approach to program understanding in-the-
large. Current work on the application of slicing techniques to extract com-
ponents and connector schemes from systems’s architectural information (see
[26], a forthcoming PhD thesis) is a step in that direction.

Another topic for future work relates to the role of genericity, captured by
abstracting typical behaviour models as strong monads, in a calculus of com-
ponents and software architectures. Also related to this subject is the practical
evidence given in [27] of the prominent role of a generic behaviour monad in
flexibly capturing different evaluation modes in a formal language interpreter.

References

[1] R. Bird, Functional Programming Using Haskell, Series in Computer Science,
Prentice-Hall International, 1998.

29

[2] J. N. Oliveira, Calculate databases with ‘simplicity’, presentation at the IFIP
WG 2.1 #59 Meeting, Nottingham, UK. (September 2004).

[3] J. N. Oliveira, C. J. Rodrigues, Transposing relations: From Maybe functions to
hash tables, in: D. Kozen (Ed.), 7th International Conference on Mathematics
of Program Construction, Springer Lect. Notes Comp. Sci. (3125), 2004, pp.
334–356.

[4] S. Meng, L. S. Barbosa, On refinement of generic software components, in:
C. Rettray, S. Maharaj, C. Shankland (Eds.), 10th Int. Conf. Algebraic Methods
and Software Technology (AMAST), Springer Lect. Notes Comp. Sci. (3116),
Stirling, 2004, pp. 506–520, best Student Co-authored Paper Award.

[5] S. Meng, L. S. Barbosa, Components as coalgebras: The refinement dimension,
Theor. Comp. Sci. 351 (2006) 276–294.

[6] R. Backhouse, Mathematics of Program Construction, Univ. of Nottingham,
2004, draft of book in preparation. 608 pages.

[7] R. Bird, O. Moor, The Algebra of Programming, Series in Computer Science,
Prentice-Hall International, 1997.

[8] G. Pfaff, P. Hagen, The Seeheim Workshop on User Interface Management
Systems, Springer-Verlag, Berlim, 1985.

[9] C. B. Jones, Systematic Software Development Using Vdm, Series in Computer
Science, Prentice-Hall International, 1986.

[10] J. Fitzgerald, P. G. Larsen, Modelling Systems: Pratical Tools and Techniques
in Software Development, Cambridge University Press, 1998.

[11] J. M. Spivey, The Z Notation: A Reference Manual (2nd ed), Series in Computer
Science, Prentice-Hall International, 1992.

[12] J. R. Abrial, The B Book: Assigning Programs to Meanings, Cambridge
University Press, 1996.

[13] J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat, M. Verhoef, Validated
Designs for Object–oriented Systems, Springer, New York, 2005.

[14] J. P. Bowen, P. T. Breuer, K. C. Lano, Formal specifications in software
maintenance: From code to Z++ and back again, Information and Software
Technology 35 (11/12) (1993) 679–690.

[15] J. Rutten, Universal coalgebra: A theory of systems, Theor. Comp. Sci. 249 (1)
(2000) 3–80, (Revised version of CWI Techn. Rep. CS-R9652, 1996).

[16] L. S. Barbosa, J. N. Oliveira, State-based components made generic, in: H. P.
Gumm (Ed.), CMCS’03, Elect. Notes in Theor. Comp. Sci., Vol. 82.1, Elsevier,
2003.

[17] L. S. Barbosa, Towards a Calculus of State-based Software Components, Journal
of Universal Computer Science 9 (8) (2003) 891–909.

30

[18] L. S. Barbosa, Components as processes: An exercise in coalgebraic modeling,
in: S. F. Smith, C. L. Talcott (Eds.), FMOODS’2000 - Formal Methods for Open
Object-Oriented Distributed Systems, Kluwer Academic Publishers, 2000, pp.
397–417.

[19] P. F. Hoogendijk, A generic theory of datatypes, Ph.D. thesis, Department of
Computing Science, Eindhoven University of Technology (1996).

[20] R. C. Backhouse, P. F. Hoogendijk, Elements of a relational theory of datatypes,
in: B. Möller, H. Partsch, S. Schuman (Eds.), Formal Program Development,
Springer Lect. Notes Comp. Sci. (755), 1993, pp. 7–42.

[21] B. Jacobs, J. Hughes, Simulations in coalgebra, in: H. P. Gumm (Ed.),
CMCS’03, Elect. Notes in Theor. Comp. Sci., Vol. 82.1, Warsaw, 2003.

[22] B. Meyer, Object-Oriented Software Construction (2nd ed.), Series in Computer
Science, Prentice-Hall International, 1997.

[23] H. Jifeng, L. Zhiming, L. Xiaoshan, A contract-oriented approach to component-
based programming, in: Z. Liu (Ed.), Proc. of FACS’03, (Formal Approaches to
Component Software), Pisa, 2003.

[24] L. S. Barbosa, J. N. Oliveira, On partial components, PURe-DI TR 2006:02:01,
U. Minho, Portugal (2006).

[25] J. N. Oliveira, C. J. Rodrigues, Pointfree factorization of operation refinement,
PURe Project technical report (submitted) (Feb. 2006).

[26] N. F. Rodrigues, Generic software slicing applied to the architectural
reconstruction of legacy systems, Ph.D. thesis, (in preparation) DI,
Universidade do Minho (2006).

[27] J. Visser, J. N. Oliveira, L. Barbosa, J. Ferreira, A. Mendes, Camila Revival:
VDM meets Haskell , presented at the Overture Workshop, July 18, co-located
with Fm 2005: 13th International Symposium on Formal Methods, University
of Newcastle upon Tyne, United Kingdom - July 18-22, 2005 (July 2005).

A Lifting orderings to the functional level

Recall the pointwise lifting
.
≤ of a preorder ≤ to the functional level (27, 28).

This construct enjoys a number of properties suitable for calculation (see e.g.
[6]), of which we present only the ones relevant for this paper. Clearly, for any
function h one has

f
.
≤ g ⇒ f · h .

≤ g · h (A.1)

The interplay between the lifted notation and converse is captured by equality

.

(≤◦) = (
.
≤)◦ (A.2)

31

whose proof is easy to carry out

f
.

(≤◦) g
≡ { (28) }

f ⊆ ≤◦ ·g
≡ { converses }

f ◦ ⊆ g◦· ≤
≡ { shunting (twice) }

g ⊆ ≤ · f
≡ { (28) }

g
.
≤ f

≡ { converses }

f (
.
≤)◦ g

Finally, the interplay between the lifted notation and currying is captured by
property

f
..
≤ g≡ f

.
≤ g (A.3)

32

