73,030 research outputs found

    Reflecting on the past and the present with temporal graph-based models

    Get PDF
    Self-adaptive systems (SAS) need to reflect on the current environment conditions, their past and current behaviour to support decision making. Decisions may have different effects depending on the context. On the one hand, some adaptations may have run into difficulties. On the other hand, users or operators may want to know why the system evolved in a certain direction. Users may just want to know why the system is showing a given behaviour or has made a decision as the behaviour may be surprising or not expected. We argue that answering emerging questions related to situations like these requires storing execution trace models in a way that allows for travelling back and forth in time, qualifying the decision making against available evidence. In this paper, we propose temporal graph databases as a useful representation for trace models to support self-explanation, interactive diagnosis or forensic analysis. We define a generic meta-model for structuring execution traces of SAS, and show how a sequence of traces can be turned into a temporal graph model. We present a first version of a query language for these temporal graphs through a case study, and outline the potential applications for forensic analysis (after the system has finished in a potentially abnormal way), self-explanation, and interactive diagnosis at runtime

    Stochastic Prediction of Multi-Agent Interactions from Partial Observations

    Full text link
    We present a method that learns to integrate temporal information, from a learned dynamics model, with ambiguous visual information, from a learned vision model, in the context of interacting agents. Our method is based on a graph-structured variational recurrent neural network (Graph-VRNN), which is trained end-to-end to infer the current state of the (partially observed) world, as well as to forecast future states. We show that our method outperforms various baselines on two sports datasets, one based on real basketball trajectories, and one generated by a soccer game engine.Comment: ICLR 2019 camera read

    Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package

    Get PDF
    We introduce the \texttt{pyunicorn} (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. \texttt{pyunicorn} is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics or network surrogates. Additionally, \texttt{pyunicorn} provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis (RQA), recurrence networks, visibility graphs and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.Comment: 28 pages, 17 figure
    corecore