447,343 research outputs found
Recovering the stationary phase condition for accurately obtaining scattering and tunneling times
The stationary phase method is often employed for computing tunneling {\em
phase} times of analytically-continuous {\em gaussian} or infinite-bandwidth
step pulses which collide with a potential barrier. The indiscriminate
utilization of this method without considering the barrier boundary effects
leads to some misconceptions in the interpretation of the phase times. After
reexamining the above barrier diffusion problem where we notice the wave packet
collision necessarily leads to the possibility of multiple reflected and
transmitted wave packets, we study the phase times for tunneling/reflecting
particles in a framework where an idea of multiple wave packet decomposition is
recovered. To partially overcome the analytical incongruities which rise up
when tunneling phase time expressions are obtained, we present a theoretical
exercise involving a symmetrical collision between two identical wave packets
and a one dimensional squared potential barrier where the scattered wave
packets can be recomposed by summing the amplitudes of simultaneously reflected
and transmitted waves.Comment: 32 pages, 5 figures, 1 tabl
A Novel Non-invasive Method to Detect RELM Beta Transcript in Gut Barrier Related Changes During a Gastrointestinal Nematode Infection
Currently, methods for monitoring changes of gut barrier integrity and the associated immune response via non-invasive means are limited. Therefore, we aimed to develop a novel non-invasive technique to investigate immunological host responses representing gut barrier changes in response to infection. We identified the mucous layer on feces from mice to be mainly composed of exfoliated intestinal epithelial cells. Expression of RELM-β, a gene prominently expressed in intestinal nematode infections, was used as an indicator of intestinal cellular barrier changes to infection. RELM-β was detected as early as 6 days post-infection (dpi) in exfoliated epithelial cells. Interestingly, RELM-β expression also mirrored the quality of the immune response, with higher amounts being detectable in a secondary infection and in high dose nematode infection in laboratory mice. This technique was also applicable to captured worm-infected wild house mice. We have therefore developed a novel non-invasive method reflecting gut barrier changes associated with alterations in cellular responses to a gastrointestinal nematode infection
Transport and spectroscopic properties of superconductor - ferromagnet - superconductor junctions of - -
Transport and Conductance spectra measurements of ramp-type junctions made of
cuprate superconducting electrodes and a manganite
ferromagnetic barrier are reported. At low
temperatures below , the conductance spectra show Andreev-like broad peaks
superposed on a tunneling-like background, and sometimes also sub-gap Andreev
resonances. The energy gap values found from fits of the data ranged
mostly between 7-10 mV. As usual, the gap features were suppressed under
magnetic fields but revealed the tunneling-like conductance background. After
field cycling to 5 or 6 T and back to 0 T, the conductance spectra were always
higher than under zero field cooling, reflecting the negative magnetoresistance
of the manganite barrier. A signature of superparamagnetism was found in the
conductance spectra of junctions with a 12 nm thick LCMO barrier. Observed
critical currents with barrier thickness of 12 nm or more, were shown to be an
artifact due to incomplete milling of one of the superconducting electrodes.Comment: 10 figure
Fractional Brownian motion with a reflecting wall
Fractional Brownian motion, a stochastic process with long-time correlations
between its increments, is a prototypical model for anomalous diffusion. We
analyze fractional Brownian motion in the presence of a reflecting wall by
means of Monte Carlo simulations. While the mean-square displacement of the
particle shows the expected anomalous diffusion behavior , the interplay between the geometric confinement and the
long-time memory leads to a highly non-Gaussian probability density function
with a power-law singularity at the barrier. In the superdiffusive case,
, the particles accumulate at the barrier leading to a divergence of
the probability density. For subdiffusion, , in contrast, the
probability density is depleted close to the barrier. We discuss implications
of these findings, in particular for applications that are dominated by rare
events.Comment: 6 pages, 6 figures. Final version as publishe
Measuring the temporal coherence of an atom laser beam
We report on the measurement of the temporal coherence of an atom laser beam
extracted from a Rb Bose-Einstein condensate. Reflecting the beam from a
potential barrier creates a standing matter wave structure. From the contrast
of this interference pattern, observed by magnetic resonance imaging, we have
deduced an energy width of the atom laser beam which is Fourier limited by the
duration of output coupling. This gives an upper limit for temporal phase
fluctuations in the Bose-Einstein condensate.Comment: 4 pages, 3 figure
Oscillatory Tunneling between Quantum Hall Systems
Electron tunneling between quantum Hall systems on the same two dimensional
plane separated by a narrow barrier is studied. We show that in the limit where
inelastic scattering time is much longer than the tunneling time, which can be
achieved in practice, electrons can tunnel back and forth through the barrier
continously, leading to an oscillating current in the absence of external
drives. The oscillatory behavior is dictated by a tunneling gap in the energy
spectrum. We shall discuss ways to generate oscillating currents and the
phenomenon of natural ``dephasing" between the tunneling currents of edge
states. The noise spectra of these junctions are also studied. They contain
singularites reflecting the existence of tunneling gaps as well as the inherent
oscillation in the system. (Figures will be given upon requests).Comment: 20 pages, OS
Small Corrections to the Tunneling Phase Time Formulation
After reexamining the above barrier diffusion problem where we notice that
the wave packet collision implies the existence of {\em multiple} reflected and
transmitted wave packets, we analyze the way of obtaining phase times for
tunneling/reflecting particles in a particular colliding configuration where
the idea of multiple peak decomposition is recovered. To partially overcome the
analytical incongruities which frequently rise up when the stationary phase
method is adopted for computing the (tunneling) phase time expressions, we
present a theoretical exercise involving a symmetrical collision between two
identical wave packets and a unidimensional squared potential barrier where the
scattered wave packets can be recomposed by summing the amplitudes of
simultaneously reflected and transmitted wave components so that the conditions
for applying the stationary phase principle are totally recovered. Lessons
concerning the use of the stationary phase method are drawn.Comment: 14 pages, 3 figure
- …
