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Fractional Brownian motion, a stochastic process with long-time correlations between its increments, is a
prototypical model for anomalous diffusion. We analyze fractional Brownian motion in the presence of a reflecting
wall by means of Monte Carlo simulations. Whereas the mean-square displacement of the particle shows the
expected anomalous diffusion behavior 〈x2〉 ∼ tα , the interplay between the geometric confinement and the
long-time memory leads to a highly non-Gaussian probability density function with a power-law singularity at
the barrier. In the superdiffusive case α > 1, the particles accumulate at the barrier leading to a divergence of the
probability density. For subdiffusion α < 1, in contrast, the probability density is depleted close to the barrier.
We discuss implications of these findings, in particular, for applications that are dominated by rare events.

DOI: 10.1103/PhysRevE.97.020102

Introduction. Diffusion is a ubiquitous phenomenon with
applications in physics, chemistry, biology, and many other
fields. Normal diffusion is characterized by a linear depen-
dence of the mean-square displacement 〈x2〉 of the moving
particle on the time t . Within the probabilistic approach
pioneered by Einstein [1], it can be understood as a stochastic
process that is local in time and space. This means that: (i) the
motion features a finite correlation time beyond which indi-
vidual displacements can be considered independent random
variables, and (ii) the displacements during a correlation time
have a finite second moment.

If at least one of these conditions is not fulfilled, deviations
from the linear time dependence 〈x2〉 ∼ t may appear, i.e.,
the diffusion may be anomalous. The list of systems in which
subdiffusive motion (for which 〈x2〉 grows slower than t)
or superdiffusive motion (where 〈x2〉 grows faster than t)
have been experimentally observed is extensive; and different
mathematical models have been developed to account for these
measurements (for reviews see, e.g., Refs. [2–8] and references
therein). Anomalous diffusion is currently reattracting consid-
erable attention because modern microscopic techniques give
unprecedented access to the motion of single molecules in
complex environments [9–11].

A possible mechanism leading to anomalous diffusion
consists in long-range power-law correlations in time between
individual displacements (steps). The prototypical model for
this situation is fractional Brownian motion (FBM) [12,13], a
non-Markovian self-similar Gaussian process with stationary
increments. The mean-square displacement of FBM follows
the power law 〈x2〉 ∼ tα . It is characterized by the anomalous
diffusion exponent α [14] that can take values between 0
and 2. In the subdiffusive case 0 < α < 1, the increments are
anticorrelated (antipersistent) whereas the motion is persistent
(positive correlations between the steps) in the superdiffusive
case 1 < α < 2. The marginal case of α = 1, separating the
two regimes, corresponds to normal Brownian motion with
uncorrelated increments.

FBM has been studied extensively in the mathematical
literature (see, e.g., Refs. [15–18]). It has found applications in
diverse fields of science and beyond, including, for example,
polymer dynamics [19,20], diffusion inside living cells [21],
traffic in electronic networks [22], as well as the dynamics
of stock markets (see, e.g., Ref. [23] and references therein).
Nonetheless, many of its properties remain poorly understood,
in particular, in the presence of nontrivial boundary conditions
(an exception is the first-passage behavior on a semi-infinite
domain [24–27]). This is related to the fact that a description of
FBM at the level of a (generalized) diffusion equation has not
yet been found, and the method of images to solve boundary
value problems does not apply [28].

Here, we focus on a paradigmatic example of FBM in a
confined geometry, viz., one-dimensional FBM in the presence
of a reflecting wall or barrier that restricts the motion to
the nonnegative x axis. We perform large-scale Monte Carlo
simulations of a discrete-time version of FBM [29] covering
the superdiffusive and subdiffusive regimes. We find that
the mean-square displacement 〈x2〉 of a particle that starts
at the origin shows the expected tα time dependence just as in
the free unconfined case. However, due to the interplay of the
long-range correlations and the confinement, the probability
density function P (x,t) of the particle position features surpris-
ing highly non-Gaussian behavior. In the superdiffusive regime
α > 1, the particles accumulate at the barrier. This leads a
divergence of the probability density for x → 0. The subdiffu-
sive regime α < 1 features the opposite behavior. The particles
are depleted near the barrier, and the probability density goes
to zero for x → 0. Both singularities are well described by
power laws. In the remainder of the Rapid Communication,
we introduce the model, describe our simulations, and discuss
in detail their results as well as implications of our findings.

Discrete-time FBM. We employ the discrete-time FBM
described by Qian [29]. Consider a free (unconfined) particle
that starts at the origin at time t = 0. Its total displacement
xt at integer time t is the result of a sequence of discrete steps
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xt = xt−1 + ξt . The increments ξi constitute a fractional Gaus-
sian noise, i.e., they are identical Gaussian random variables
of zero mean, variance σ 2, and correlation function,

C(j ) = 〈ξiξi+j 〉 = 1
2σ 2(|j − 1|α − 2|j |α + |j + 1|α). (1)

In the long-time limit j → ∞, the correlations take the
power-law form 〈ξiξi+j 〉 ∼ α(α − 1)jα−2. They are positive
(persistent) for α > 1 and negative (antipersistent) for α < 1.
The resulting correlation function of the displacements is easily
evaluated; it reads

〈xsxt 〉 = 1
2σ 2(sα − |s − t |α + tα). (2)

For s = t , this implies anomalous diffusion with mean-square
displacement 〈x2

t 〉 = σ 2tα .
To implement the reflecting wall at x = 0, we employ

a modified recursion for the displacements xt = |xt−1 + ξt |
whereas the (externally given) fractional Gaussian noise re-
mains unchanged [30]. This means if the particle’s position
xt happens to be negative, it is placed at −xt instead. Alter-
natively, one could, e.g., place the particle at the origin via
xt = max(xt−1 + ξt ,0). Both versions should yield the same
long-time behavior because individual steps have a finite char-
acteristic length of σ . Indeed, we have numerically confirmed
that their results agree for times fulfilling 〈x2

t 〉 � σ 2.
To set the stage, let us briefly summarize reflected normal

Brownian motion (α = 1). The probability density P (x,t) of
the particle position can be found by solving the diffusion equa-
tion ∂tP = (σ 2/2)∂2

xP under the flux-free boundary condition
∂xP = 0 at x = 0 and initial condition P (x,0) = δ(x). This
yields the Gaussian,

P (x,t) =
√

2

πσ 2t
exp

(
− x2

2σ 2t

)
(3)

restricted to nonnegative x values. The mean-square displace-
ment 〈x2

t 〉 thus increases as t just as in the unconfined case.
Importantly, for normal Brownian motion, the reflecting wall
does not change the Gaussian character of P (x,t).

Monte Carlo simulations. We perform simulations of the
discrete-time reflected FBM for anomalous diffusion expo-
nents α ranging from 0.4 to 1.8. Each simulation uses up to
5 × 107 particles that start from the origin and perform up to
6.7 × 107 (226) time steps. The correlated Gaussian random
numbers representing the fractional noise ξi are generated by
means of the Fourier-filtering method [31]. It starts from a
sequence of independent Gaussian random numbers χi . The
Fourier transform χ̃ω of these numbers is then converted via
ξ̃ω = [C̃(ω)]1/2χ̃ω, where C̃(ω) is the Fourier transform of the
correlation function (1). The inverse Fourier transformation of
the ξ̃ω gives the desired noise values. In our simulations, the
variance σ 2 of the ξi is fixed at unity.

Figure 1 shows the resulting time dependencies of the aver-
age displacement 〈xt 〉 and the root-mean-square displacement
〈x2

t 〉1/2 for several values of the anomalous diffusion exponent
α used to create the fractional noise ξi . The figure demonstrates
that the mean-square displacement 〈x2

t 〉 increases as tα just as
in the unconfined case. Power-law fits yield exponent values
of 1.806(10), 1.196(6), 0.998(6), 0.804(4), and 0.51(2) for
α = 1.8, 1.2, 1.0, 0.8, and 0.5, respectively. (The numbers in
brackets give the error of the last digit.) As the barrier restricts

102 103 104 105 106 107

t

100

101

102

103

104

105

106

<
x

>
,√

<
x
2

>

α

1.8

1.2

1.0

0.8

0.5

FIG. 1. Average (the solid lines) and root-mean-square (the
dashed lines) displacements of a reflected random walker vs time t

for several values of the anomalous diffusion exponent α. The relative
statistical errors of the data are about 10−2, much smaller than the
symbol size. The solid and dashed lines represent power-law fits.
The thick yellow line (right above the α = 1.0 data) shows normal
diffusion behavior 〈x2〉 ∼ t with an arbitrary prefactor.

the motion to nonnegative x values, the average displacement
〈xt 〉 is nonzero and increases as tα/2.

Although the average and mean-square displacements of the
particle show the expected behavior, the probability density
P (x) of its position displays surprising features. The proba-
bility density of unconfined FBM is a Gaussian. Based on the
results for reflected normal Brownian motion, one might expect
that P (x) for reflected FBM is a Gaussian of the appropriate
width and restricted to nonnegative x values. However, Fig. 2
demonstrates striking deviations from Gaussian behavior for
the example of α = 1.8. Specifically, particles accumulate
close to the reflecting wall. This creates a divergence of P (x)
for x → 0 whereas the large-x behavior remains Gaussian.
We observe analogous behavior for all α’s in the superdiffu-
sive regime (α = 1.1–1.8). For subdiffusive α (0.4–0.9), in
contrast, the region close to the reflecting wall is depleted of
particles, and P (0) approaches zero. For α = 1, our data agree
with the half-Gaussian (3) resulting from the solution of the
normal diffusion equation.
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FIG. 2. Probability density function P of the position x at differ-
ent times t for α = 1.8. The statistical errors of the data are smaller
than the symbol size. A comparison of P (x) for unconfined and
reflected FBM is shown in the inset.
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FIG. 3. Scaled probability density Y = 〈x2〉1/2P vs x/〈x2〉1/2 for
α = 0.8 [panel (a)] and 1.8 [panel (b)] for several times t . The
probability densities for different t collapse onto a common master
curve. The deviations at small x for early times stem from the
discrete-time character of our simulations (see the text). The inset
shows a log-linear plot of Y vs x2, demonstrating the Gaussian
character of the large-x tail.

Despite the non-Gaussian character, the probability den-
sities at different times can be scaled to fall onto a common
master curve if they are expressed in terms of y = x/〈x2

t 〉1/2 =
x/(σ tα/2). This is illustrated in Fig. 3 for the examples of α =
1.8 (superdiffusive) and α = 0.8 (subdiffusive). The scaling
collapse means that the probability density can be written in
the form

P (x,t) = 1

σ tα/2
Y [x/(σ tα/2)], (4)

where Y is a dimensionless scaling function. We observe
analogous scaling behavior for all investigated α’s. [For normal
Brownian motion α = 1, it follows directly from Eq. (3).]
This implies that the singularity observed close to x = 0 is
not a finite-time artifact but part of the (asymptotic) long-
time behavior. Note that the deviations from the scaling form
appearing in Fig. 3 for small displacements x at short-times
t arise because we use a discrete-time version of FBM. The
scaling form only holds for x � σ as the Gaussian distributed
step ξ obscures the structure of P (x,t) for x � σ .

Let us now analyze in more detail the functional form of the
singularity of the probability density function P (x) for x → 0.
Figure 4 presents a double-logarithmic plot of the scaled prob-
ability densities at time t = 524 288 for several values of α. All
curves become straight lines at small x, i.e., they feature power-
law behavior P (x) ∼ xκ . (For α = 1.8, the power law at small
x is preceded by a wide crossover region. The simulations thus
require long times to access the asymptotic small-x regime.)
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FIG. 4. Scaled probability density function 〈x2〉1/2P vs x/〈x2〉1/2

at t = 524 288 for several values of α. For small x, the probability
densities follow power-laws P (x) ∼ xκ . Power-law fits of the small-x
behavior yield κ ≈ −0.89, −0.33, 0.00, 0.47, and 1.75 for α = 1.8,
1.2, 1.0, 0.8, and 0.5, respectively.

To determine the singularity exponent κ accurately, we
employ power-law fits of the small-x behavior of P (x,t)
obtained at the longest-times t . Figure 5 shows the resulting
dependence of κ on the anomalous diffusion exponent α. The
data indicate that κ decreases monotonically with α. In the
subdiffusive regime α < 1, it takes positive values [such that
P (x) vanishes at x = 0]. For normal Brownian motion α = 1,
we find κ = 0 which implies that P (x) approaches a constant
for x → 0. This agrees with the analytical solution (3). In
the superdiffusive case α > 1, the exponent κ is negative,
corresponding to a divergence of P (x) at x = 0. Note that the κ

values obtained from the fit show a significant dependence on
the simulation time for α � 0.7, indicating a slow crossover to
the asymptotic behavior. We therefore extrapolate these values
to infinite time as shown in the inset of Fig. 5 [32].

The exact functional form of the κ(α) dependence is not
known. We find, however, that the empirical function κ =
2/α − 2 describes the data well. In fact, the agreement is
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FIG. 5. Exponent κ vs anomalous diffusion exponent α. The κ

values stem from power-law fits of the small-x behavior of P (x,t)
at the longest times (t = 2 × 106 to 6.7 × 107 depending on α). The
error bars combine the statistical error and the uncertainty of the fit
interval. The solid line represents the conjectured function κ = 2/α −
2. For α � 0.7, the squares mark the extrapolated (to infinite time) κ

values, whereas the (green) dots show the effective κ at the longest
simulation time.
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FIG. 6. Sample trajectories of reflected FBM for the cases of sub-
diffusion (α = 0.5), normal diffusion (α = 1.0), and superdiffusion
(α = 1.5). The long-range correlations of the FBM steps cause the
particle to get stuck at the wall (at x = 0) for long times in the
superdiffusive case. In contrast, the particle will tend to move away
from the wall right after reaching it for subdiffusion.

excellent over the entire α range if we use the extrapolated
κ values for α � 0.7. In the limit α → 0, the function κ =
2/α − 2 predicts κ to diverge. In the ballistic limit α → 2, the
function predicts κ → −1. As a power law with κ = −1 is not
normalizable, this means the singularity turns into a δ peak.

The probability density for ballistic motion (α = 2 where
ξi’s are perfectly correlated in time) can actually be found
analytically. Half of the particles (those with negative ξ1) get
stuck at the wall forever whereas those with positive ξ1 move
to the right with Gaussian-distributed speeds. P (x) is thus a
sum of a half-Gaussian of width σ t and a δ peak (of weight
0.5) at the origin, in agreement with the ballistic limit of the
conjectured κ(α) function.

Discussion. To summarize, our central result is the strik-
ing non-Gaussian behavior of reflected FBM, caused by the
interplay between the boundary condition and the long-range
correlations. The probability density P (x) exhibits a power-
law singularity P (x) ∼ xκ at the barrier. It can be understood
qualitatively as follows. For persistent correlations (superdif-
fusion), the particle will attempt to continue in the negative x

direction upon reaching the wall. As the wall prevents this, the
particle will get stuck at the wall for a long time [33], increasing
the probability density there. For antipersistent correlations
(subdiffusion), in contrast, the particle will tend to move away
from the wall right after reaching it, reducing the probability
density compared to the uncorrelated (normal diffusion) case.
This is illustrated in Fig. 6.

We note in passing that non-Gaussian fluctuations of indi-
vidual trajectories were recently discovered in superdiffusive
FBM [34]. Moreover, non-Gaussian behavior in diffusive
dynamics can also be caused by several other mechanisms
[2,3,5,35–40]. More generally, long-range correlations and
the corresponding nonanalyticities can arise even for normal
diffusion in the presence of soft modes or quenched disorder
[41–43].

It is instructive to compare our results for FBM with the
behavior of another anomalous diffusion model called scaled
Brownian motion (SBM) [44,45]. SBM can be understood as
normal diffusion with a time-dependent diffusion constant. Its
probability density fulfills the generalized diffusion equation

∂tP = αtα−1(σ 2/2)∂2
xP . In the unconfined case (no barrier),

the resulting probability density of a particle starting at the
origin is a Gaussian of zero mean and variance 〈x2

t 〉 = σ 2tα .
This means it is identical to the probability density of FBM.
However, in contrast to FBM, the probability density of SBM
remains Gaussian in the presence of a reflecting wall. This
follows from the fact that the Gaussian fulfills not only the
generalized diffusion equation, but also the flux-free boundary
condition ∂xP = 0 imposed by the barrier.

Reflected random walks find numerous applications in
physics, chemistry, biology, and beyond. The singularity at
x = 0 in the probability density function P (x) of the particle
position will be particularly important in applications that are
dominated by rare events. Imagine, for example, that one is
interested in a quantity z = e−x that depends exponentially
on the position (see Ref. [46] for a recent example of such a
situation). The average of z is dominated by particles close
to the origin. Indeed, a straightforward calculation shows that
〈z〉 ∼ t−α(1+κ)/2 for sufficiently long times. The appearance of
κ in this relation means that the singularity in P (x) affects the
long-time behavior qualitatively.

How robust are our results if the correlation function C(j )
of the steps is modified? If the correlations are persistent
(positive) and C(j ) decays for large j as a power-law jα−2

with α > 1 (i.e., more slowly than j−1), the resulting long-time
behavior is expected to be identical to the corresponding FBM.
This implies superdiffusive motion and a divergence of P (x)
at the origin. We have confirmed this by simulations using
C(j ) = (1 + j 2)(α−2)/2. In contrast, for persistent correlations
that decay faster than j−1, the behavior is expected to agree
with that of normal uncorrelated Brownian motion. The
subdiffusive behavior occurring for FBM with α < 1 is more
fragile as it relies on the antipersistent correlations fulfilling∑

j C(j ) = 0. A generic antipersistent correlation function
that instead fulfills

∑
j C(j ) = const 	= 0 is expected to

produce normal diffusion behavior.
So far, we have considered unbiased reflected FBM. It

also interesting to ask how the reflecting wall influences the
biased case. If the bias is away from the barrier (in the
positive x direction), the barrier will become less important
with increasing time. For long times we thus expect to recover
the Gaussian probability density of unconfined FBM. For bias
towards the barrier (in the negative x direction), in contrast, we
expect a steady state whose probability density is determined
by the interplay of the long-range correlations and the bias.

To conclude, the interplay between the geometric confine-
ment and the long-time memory encoded in the FBM correla-
tions leads to highly non-Gaussian behavior with a singular
probability density. The mechanism causing the singularity
appears to be general; we thus expect our results to provide a
framework for a large class of long-range correlated processes
in nontrivial geometries.
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