4 research outputs found

    Robust individual pig tracking

    Get PDF
    The locations of pigs in the group housing enable activity monitoring and improve animal welfare. Vision-based methods for tracking individual pigs are noninvasive but have low tracking accuracy owing to long-term pig occlusion. In this study, we developed a vision-based method that accurately tracked individual pigs in group housing. We prepared and labeled datasets taken from an actual pig farm, trained a faster region-based convolutional neural network to recognize pigs’ bodies and heads, and tracked individual pigs across video frames. To quantify the tracking performance, we compared the proposed method with the global optimization (GO) method with the cost function and the simple online and real-time tracking (SORT) method on four additional test datasets that we prepared, labeled, and made publicly available. The predictive model detects pigs’ bodies accurately, with F1-scores of 0.75 to 1.00, on the four test datasets. The proposed method achieves the largest multi-object tracking accuracy (MOTA) values at 0.75, 0.98, and 1.00 for three test datasets. In the remaining dataset, the proposed method has the second-highest MOTA of 0.73. The proposed tracking method is robust to long-term occlusion, outperforms the competitive baselines in most datasets, and has practical utility in helping to track individual pigs accurately

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio
    corecore