52,679 research outputs found

    Timing Measurement Platform for Arbitrary Black-Box Circuits Based on Transition Probability

    No full text

    New Ideas for Brain Modelling

    Full text link
    This paper describes some biologically-inspired processes that could be used to build the sort of networks that we associate with the human brain. New to this paper, a 'refined' neuron will be proposed. This is a group of neurons that by joining together can produce a more analogue system, but with the same level of control and reliability that a binary neuron would have. With this new structure, it will be possible to think of an essentially binary system in terms of a more variable set of values. The paper also shows how recent research associated with the new model, can be combined with established theories, to produce a more complete picture. The propositions are largely in line with conventional thinking, but possibly with one or two more radical suggestions. An earlier cognitive model can be filled in with more specific details, based on the new research results, where the components appear to fit together almost seamlessly. The intention of the research has been to describe plausible 'mechanical' processes that can produce the appropriate brain structures and mechanisms, but that could be used without the magical 'intelligence' part that is still not fully understood. There are also some important updates from an earlier version of this paper

    Design of an integrated airframe/propulsion control system architecture

    Get PDF
    The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that uses both reliability and performance. A detailed account is given for the testing associated with a subset of the architecture and concludes with general observations of applying the methodology to the architecture

    Predicting links in ego-networks using temporal information

    Get PDF
    Link prediction appears as a central problem of network science, as it calls for unfolding the mechanisms that govern the micro-dynamics of the network. In this work, we are interested in ego-networks, that is the mere information of interactions of a node to its neighbors, in the context of social relationships. As the structural information is very poor, we rely on another source of information to predict links among egos' neighbors: the timing of interactions. We define several features to capture different kinds of temporal information and apply machine learning methods to combine these various features and improve the quality of the prediction. We demonstrate the efficiency of this temporal approach on a cellphone interaction dataset, pointing out features which prove themselves to perform well in this context, in particular the temporal profile of interactions and elapsed time between contacts.Comment: submitted to EPJ Data Scienc

    Achieving Extreme Resolution in Numerical Cosmology Using Adaptive Mesh Refinement: Resolving Primordial Star Formation

    Full text link
    As an entry for the 2001 Gordon Bell Award in the "special" category, we describe our 3-d, hybrid, adaptive mesh refinement (AMR) code, Enzo, designed for high-resolution, multiphysics, cosmological structure formation simulations. Our parallel implementation places no limit on the depth or complexity of the adaptive grid hierarchy, allowing us to achieve unprecedented spatial and temporal dynamic range. We report on a simulation of primordial star formation which develops over 8000 subgrids at 34 levels of refinement to achieve a local refinement of a factor of 10^12 in space and time. This allows us to resolve the properties of the first stars which form in the universe assuming standard physics and a standard cosmological model. Achieving extreme resolution requires the use of 128-bit extended precision arithmetic (EPA) to accurately specify the subgrid positions. We describe our EPA AMR implementation on the IBM SP2 Blue Horizon system at the San Diego Supercomputer Center.Comment: 23 pages, 5 figures. Peer reviewed technical paper accepted to the proceedings of Supercomputing 2001. This entry was a Gordon Bell Prize finalist. For more information visit http://www.TomAbel.com/GB

    Birth Kick Distributions and the Spin-Kick Correlation of Young Pulsars

    Full text link
    Evidence from pulsar wind nebula symmetry axes and radio polarization observations suggests that pulsar motions correlate with the spin directions. We assemble this evidence for young isolated pulsars and show how it can be used to quantitatively constrain birth kick scenarios. We illustrate by computing several plausible, but idealized, models where the momentum thrust is proportional to the neutrino cooling luminosity of the proto-neutron star. Our kick simulations include the effects of pulsar acceleration and spin-up and our maximum likelihood comparison with the data constrains the model parameters. The fit to the pulsar spin and velocity measurements suggests that: i) the anisotropic momentum required amounts to ~10% of the neutrino flux, ii) while a pre-kick spin of the star is required, the preferred magnitude is small 10-20rad/s, so that for the best-fit models iii) the bulk of the spin is kick-induced with Ωˉ\bar \Omega ~120rad/s and iv) the models suggest that the anisotropy emerges on a timescale τ\tau ~1-3s.Comment: 37 pages, 13 figures, ApJ accepte
    corecore