12 research outputs found

    Improved methods for point of care detection of blood-borne pathogens

    Full text link
    Preventing the spread of blood-borne infectious diseases is vital to improving global health outcomes, particularly for low- and middle-income countries (LMICs). Sensitive and accurate diagnosis of infections is vital to this effort. Nucleic acid amplification tests (NAATs), which amplify pathogen nucleic acids, are gold-standard techniques for detection and quantification of pathogen levels. However, standard NAATs such as polymerase chain reaction (PCR) require expensive equipment for blood sample processing and DNA/RNA amplification, making them challenging to implement in resource-limited areas of LMICs. In this work, I developed two methods to simplify sample processing and amplification to make NAATs more accessible for use at the point of care in resource-limited areas of LMICs. The first method enables instrument-free nucleic acid extraction from whole blood. A room temperature lysis chemistry and a paper-and-plastic sample capture device were developed to isolate, purify, and store pathogen DNA and RNA on a paper capture membrane. Extracted nucleic acids can be eluted and used in standard NAATs or in developmental amplification assays. I demonstrated successful isolation of HIV virion RNA and P. falciparum parasite DNA from whole blood samples over several concentrations with >60% recovery. Extracted RNA remains stable on the capture membrane for two weeks at room temperature and 37掳C, alleviating the need for cold storage after sample collection. These results are a promising step toward using this method for simplified sample extraction and storage in low-resource settings in LMICs. The second method I developed is a novel isothermal amplification technique for P. falciparum DNA. Sensitive diagnosis of P. falciparum infection is vital to identify and treat low-density, asymptomatic infections and move closer to eliminating malaria. Highly sensitive PCR assays are difficult to deploy in resource-limited areas of LMICs and existing isothermal methods require complex assay design and are often not sensitive enough to diagnose asymptomatic infections. Here, I developed a novel isothermal technique which amplifies multiple regions of the P. falciparum genome, generating a large amount of DNA for better analytical sensitivity. The assay achieves a lower limit of detection of ~23.4 fg P. falciparum gDNA/碌L (~1 parasite/碌L) in 30 minutes, similar gold-standard PCR assay while using a fraction of the resources required for PCR. Lastly, I adapted the assay for implementation at the point of care. I showed that the assay directly amplifies P. falciparum parasite DNA captured on paper with the paper-and-plastic device previously developed. I also incorporated visual assay readout with lateral flow strips, eliminating the need for specialized equipment to detect amplified DNA. I explored methods to eliminate cold storage of reagents by stabilizing amplification enzymes at room temperature. The work described in this thesis represents two enhanced methods for point of care detection of blood borne pathogens. By simplifying sample extraction, amplification, and detection, the methods described here make NAATs more accessible to low-resource areas of LMICs. The whole blood nucleic acid extraction device and isothermal assay described in this work can be used together for sensitive diagnosis of P. falciparum malaria. The methods can also be used independently, or in combination with other techniques routinely used in the field. The flexibility built in to these methods enables easier integration into existing workflows in LMICs.2021-05-18T00:00:00

    Development of novel hybrid phosphorated quinoline derivatives as topoisomerase 1B inhibitors with antiproliferative activity

    Get PDF
    466 p.El presente trabajo de Tesis Doctoral recopila la s铆ntesis y evaluaci贸n biol贸gica de nuevos derivados h铆bridos de quinolinas fosforadas como inhibidores de topoisomerasa 1B humana (hTOP1B) con actividad antiproliferativa. Se estudiaron varias metodolog铆as sint茅ticas basadas en la reacci贸n de Povarov, que permitieron la obtenci贸n de dichos derivados mediante procesos one-pot y estrategias multicomponente. Se estudi贸 el comportamiento de los compuestos como inhibidores de hTOP1B, identificando los compuestos con mayor actividad inhibitoria de la diana y estudiando su mecanismo de inhibici贸n, resultando en inhibidores catal铆ticos (supresores) de hTOP1B. A mayores, se desarroll贸 un nuevo m茅todo cuantitativo de drug screening para la detecci贸n de nuevas mol茅culas con capacidad de inhibir hTOP1B, as铆 como elucidar su afectaci贸n al ciclo catal铆tico de hTOP1B. Por otro lado, se investig贸 la actividad antiproliferativa de los compuestos mediante ensayos de viabilidad celular in vitro en l铆neas celulares humanas cancerosas/embrionaria/no-cancerosa (A-549, SK-OV-3/HEK-293/MRC-5) y se estudi贸 como afecta selectivamente la diana hTOP1B a la citotoxicidad inducida por los compuestos en las l铆neas celulares RMPI-8402/CPT-K5 y HEK-293 con knockdown de hTOP1B

    Refined Method for Droplet Microfluidics-Enabled Detection of Plasmodium falciparum Encoded Topoisomerase I in Blood from Malaria Patients

    No full text
    Rapid and reliable diagnosis is essential in the fight against malaria, which remains one of the most deadly infectious diseases in the world. In the present study we take advantage of a droplet microfluidics platform combined with a novel and user-friendly biosensor for revealing the main malaria-causing agent, the Plasmodium falciparum (P. falciparum) parasite. Detection of the parasite is achieved through detection of the activity of a parasite-produced DNA-modifying enzyme, topoisomerase I (pfTopoI), in the blood from malaria patients. The assay presented has three steps: (1) droplet microfluidics-enabled extraction of active pfTopoI from a patient blood sample; (2) pfTopoI-mediated modification of a specialized DNA biosensor; (3) readout. The setup is quantitative and specific for the detection of Plasmodium topoisomerase I. The procedure is a considerable improvement of the previously published Rolling Circle Enhanced Enzyme Activity Detection (REEAD) due to the advantages of involving no signal amplification steps combined with a user-friendly readout. In combination these alterations represent an important step towards exploiting enzyme activity detection in point-of-care diagnostics of malaria

    Refined Method for Droplet Microfluidics-Enabled Detection of Plasmodium falciparum Encoded Topoisomerase I in Blood from Malaria Patients

    No full text
    Rapid and reliable diagnosis is essential in the fight against malaria, which remains one of the most deadly infectious diseases in the world. In the present study we take advantage of a droplet microfluidics platform combined with a novel and user-friendly biosensor for revealing the main malaria-causing agent, the Plasmodium falciparum (P. falciparum) parasite. Detection of the parasite is achieved through detection of the activity of a parasite-produced DNA-modifying enzyme, topoisomerase I (pfTopoI), in the blood from malaria patients. The assay presented has three steps: (1) droplet microfluidics-enabled extraction of active pfTopoI from a patient blood sample; (2) pfTopoI-mediated modification of a specialized DNA biosensor; (3) readout. The setup is quantitative and specific for the detection of Plasmodium topoisomerase I. The procedure is a considerable improvement of the previously published Rolling Circle Enhanced Enzyme Activity Detection (REEAD) due to the advantages of involving no signal amplification steps combined with a user-friendly readout. In combination these alterations represent an important step towards exploiting enzyme activity detection in point-of-care diagnostics of malaria

    Removal of antagonistic spindle forces can rescue metaphase spindle length and reduce chromosome segregation defects

    Get PDF
    Regular Abstracts - Tuesday Poster Presentations: no. 1925Metaphase describes a phase of mitosis where chromosomes are attached and oriented on the bipolar spindle for subsequent segregation at anaphase. In diverse cell types, the metaphase spindle is maintained at a relatively constant length. Metaphase spindle length is proposed to be regulated by a balance of pushing and pulling forces generated by distinct sets of spindle microtubules and their interactions with motors and microtubule-associated proteins (MAPs). Spindle length appears important for chromosome segregation fidelity, as cells with shorter or longer than normal metaphase spindles, generated through deletion or inhibition of individual mitotic motors or MAPs, showed chromosome segregation defects. To test the force balance model of spindle length control and its effect on chromosome segregation, we applied fast microfluidic temperature-control with live-cell imaging to monitor the effect of switching off different combinations of antagonistic forces in the fission yeast metaphase spindle. We show that spindle midzone proteins kinesin-5 cut7p and microtubule bundler ase1p contribute to outward pushing forces, and spindle kinetochore proteins kinesin-8 klp5/6p and dam1p contribute to inward pulling forces. Removing these proteins individually led to aberrant metaphase spindle length and chromosome segregation defects. Removing these proteins in antagonistic combination rescued the defective spindle length and, in some combinations, also partially rescued chromosome segregation defects. Our results stress the importance of proper chromosome-to-microtubule attachment over spindle length regulation for proper chromosome segregation.postprin

    Psr1p interacts with SUN/sad1p and EB1/mal3p to establish the bipolar spindle

    Get PDF
    Regular Abstracts - Sunday Poster Presentations: no. 382During mitosis, interpolar microtubules from two spindle pole bodies (SPBs) interdigitate to create an antiparallel microtubule array for accommodating numerous regulatory proteins. Among these proteins, the kinesin-5 cut7p/Eg5 is the key player responsible for sliding apart antiparallel microtubules and thus helps in establishing the bipolar spindle. At the onset of mitosis, two SPBs are adjacent to one another with most microtubules running nearly parallel toward the nuclear envelope, creating an unfavorable microtubule configuration for the kinesin-5 kinesins. Therefore, how the cell organizes the antiparallel microtubule array in the first place at mitotic onset remains enigmatic. Here, we show that a novel protein psrp1p localizes to the SPB and plays a key role in organizing the antiparallel microtubule array. The absence of psr1+ leads to a transient monopolar spindle and massive chromosome loss. Further functional characterization demonstrates that psr1p is recruited to the SPB through interaction with the conserved SUN protein sad1p and that psr1p physically interacts with the conserved microtubule plus tip protein mal3p/EB1. These results suggest a model that psr1p serves as a linking protein between sad1p/SUN and mal3p/EB1 to allow microtubule plus ends to be coupled to the SPBs for organization of an antiparallel microtubule array. Thus, we conclude that psr1p is involved in organizing the antiparallel microtubule array in the first place at mitosis onset by interaction with SUN/sad1p and EB1/mal3p, thereby establishing the bipolar spindle.postprin

    Dichotomic role of NAADP/two-pore channel 2/Ca2+ signaling in regulating neural differentiation of mouse embryonic stem cells

    Get PDF
    Poster Presentation - Stem Cells and Pluripotency: abstract no. 1866The mobilization of intracellular Ca2+stores is involved in diverse cellular functions, including cell proliferation and differentiation. At least three endogenous Ca2+mobilizing messengers have been identified, including inositol trisphosphate (IP3), cyclic adenosine diphosphoribose (cADPR), and nicotinic adenine acid dinucleotide phosphate (NAADP). Similar to IP3, NAADP can mobilize calcium release in a wide variety of cell types and species, from plants to animals. Moreover, it has been previously shown that NAADP but not IP3-mediated Ca2+increases can potently induce neuronal differentiation in PC12 cells. Recently, two pore channels (TPCs) have been identified as a novel family of NAADP-gated calcium release channels in endolysosome. Therefore, it is of great interest to examine the role of TPC2 in the neural differentiation of mouse ES cells. We found that the expression of TPC2 is markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebound during the late stages of neurogenesis. Correspondingly, perturbing the NAADP signaling by TPC2 knockdown accelerates mouse ES cell differentiation into neural progenitors but inhibits these neural progenitors from committing to the final neural lineage. Interestingly, TPC2 knockdown has no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Overexpression of TPC2, on the other hand, inhibits mouse ES cell from entering the neural lineage. Taken together, our data indicate that the NAADP/TPC2-mediated Ca2+signaling pathway plays a temporal and dichotomic role in modulating the neural lineage entry of ES cells; in that NAADP signaling antagonizes ES cell entry to early neural progenitors, but promotes late neural differentiation.postprin
    corecore