115 research outputs found

    Visualization and Localization of Interventional Devices with MRI by Susceptibility Mapping

    Get PDF
    Recently, interventional procedures can be performed with the visual assistance of MRI. However, the devices used in these procedures, such as brachytherapy seeds, biopsy needles, markers, and stents, have a large magnetic susceptibility that leads to severe signal loss and distortion in the MRI images and degrades the accuracy of the localization. Right now, there is no effective way to correctly identify, localize and visualize these interventional devices in MRI images. In this dissertation, we proposed a method to improve the accuracy of localization and visualization by generating positive contrast of the interventional devices using a regularized L1 minimization algorithm. Specifically, the spin-echo sequence with a shifted 180-degree pulse is used to acquire high SNR data. A short shift time is used to avoid severe phase wrap. A phase unwrapping method based on Markov Random Field using Highest-Confidence-First algorithm is proposed to unwrap the phase image. Then the phase images with different shifted time are used to calculate the field map. Next, L1 regularized deconvolution is performed to calculate the susceptibility map. With much higher susceptibility of the interventional devices than the background tissue, the interventional devices show positive-contrast in the susceptibility image. Computer simulations were performed to study the effect of the signal-to-noise ratio, resolution, orientation and size of the interventional devices on the accuracy of the results. Experiments were performed using gelatin and tissue phantom with brachytherapy seeds, gelatin phantoms with platinum wires, and water phantom with titanium needles. The results show that the proposed method provide positive contrast images of these interventional devices, differentiate them from other structures in the MRI images, and improves the visualization and localization of the devices

    Dependent Nonparametric Bayesian Group Dictionary Learning for online reconstruction of Dynamic MR images

    Full text link
    In this paper, we introduce a dictionary learning based approach applied to the problem of real-time reconstruction of MR image sequences that are highly undersampled in k-space. Unlike traditional dictionary learning, our method integrates both global and patch-wise (local) sparsity information and incorporates some priori information into the reconstruction process. Moreover, we use a Dependent Hierarchical Beta-process as the prior for the group-based dictionary learning, which adaptively infers the dictionary size and the sparsity of each patch; and also ensures that similar patches are manifested in terms of similar dictionary atoms. An efficient numerical algorithm based on the alternating direction method of multipliers (ADMM) is also presented. Through extensive experimental results we show that our proposed method achieves superior reconstruction quality, compared to the other state-of-the- art DL-based methods

    3D spatio-temporal analysis for compressive sensing in magnetic resonance imaging of the murine cardiac cycle

    Get PDF
    This thesis consists of two major contributions, each of which has been prepared in a conference paper. These papers will be submitted for publication in the SPIE 2013 Medical Imaging Conference and the ASEE 2013 Annual Conference. The first paper explores a three-dimensional compressive sensing (CS) technique for reducing measurement time in MR imaging of the murine (mouse) cardiac cycle. By randomly undersampling a single 2D slice of a mouse heart at regular time intervals as it expands and contracts through the stages of a heartbeat, a CS reconstruction algorithm can be made to exploit transform sparsity in time as well as space. For the purposes of measuring the left ventricular volume in the mouse heart, this 3D approach offers significant advantages against classical 2D spatial compressive sensing. The second paper describes the modification and testing of a set of laboratory exercises for developing an undergraduate level understanding of Simulink. An existing partial set of lab exercises for Simulink was obtained and improved considerably in pedagogical utility, and then the completed set of pilot exercises was taught as a part of a communications course at the Missouri University of Science and Technology in order to gauge student responses and learning experiences. In this paper, the content of the laboratory exercises with corresponding educational approaches are discussed, along with student feedback and future improvements. --Abstract, page iv

    Modified-cs-residual for Recursive Reconstruction of Highly Undersampled Functional MRI Sequences

    Get PDF
    Functional magnetic resonance imaging(fMRI) is a non-invasive technique to investigate brain function. It is done by inferring the neural activity by acquiring the MR images when the subject is provided with controllable stimulus. Like other MR techniques, fMRI provides high quality images while suffering the burden of slow data acquisition time and thus the sacrifice in the spatial\temporal resolution. In MR imaging, the scan time is roughly proportional to the number of measurements, therefore sampling fewer measurements can reduce the acquisition time. The recent theory of compressive sensing (CS) states that under certain conditions, images with a sparse representation can be recovered from randomly undersampled measurements. In this dissertation, we propose a recursive sparse reconstruction algorithm to causally reconstruct fMRI sequence from a limited number of measurements. The proposed solution modified-CS-residual uses the time correlation between the image sequences in two novel ways: (a) it uses the fact that the sparsity pattern changes slowly over the time and (b) it also uses the fact that the significant nonzero signal\pixel values also changes slowly. We also demonstrate that our solution provides a very fast and accurate reconstruction while using only about 30% measurements per frame. Extensive experiment results also show the adaptability of modified- CS-residual to different types of blood oxygenation level dependence (BOLD) contrast signals. As a result, our proposed modified-CS-residual can causally reconstruct fMRI sequences and significantly reduce the image acquisition time to enable higher spatial and temporal resolution, which is of great practical use in rapid and dynamic fMRI
    • …
    corecore