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ABSTRACT 

 

Recently, interventional procedures can be performed with the visual 

assistance of MRI. However, the devices used in these procedures, such as 

brachytherapy seeds, biopsy needles, markers, and stents, have a large magnetic 

susceptibility that leads to severe signal loss and distortion in the MRI images and 

degrades the accuracy of the localization. Right now, there is no effective way to 

correctly identify, localize and visualize these interventional devices in MRI images. 

In this dissertation, we proposed a method to improve the accuracy of 

localization and visualization by generating positive contrast of the interventional 

devices using a regularized L1 minimization algorithm. Specifically, the spin-echo 

sequence with a shifted 180-degree pulse is used to acquire high SNR data. A short 

shift time is used to avoid severe phase wrap. A phase unwrapping method based on 

Markov Random Field using Highest-Confidence-First algorithm is proposed to 

unwrap the phase image. Then the phase images with different shifted time are used 

to calculate the field map. Next, L1 regularized deconvolution is performed to 

calculate the susceptibility map. With much higher susceptibility of the 

interventional devices than the background tissue, the interventional devices show 

positive-contrast in the susceptibility image. 

Computer simulations were performed to study the effect of the signal-to-

noise ratio, resolution, orientation and size of the interventional devices on the 

accuracy of the results. Experiments were performed using gelatin and tissue 
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phantom with brachytherapy seeds, gelatin phantoms with platinum wires, and water 

phantom with titanium needles. The results show that the proposed method provide 

positive contrast images of these interventional devices, differentiate them from 

other structures in the MRI images, and improves the visualization and localization 

of the devices. 
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CHAPTER I  

INTRODUCTION 

 

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique to 

investigate the anatomy and function of the body. Since its invention in early 1970’s, it 

has been rapidly developed and widely used in many clinical and experimental studies. 

Thousands of millions of researchers delicate their effort on every detail and aspect of 

MRI, including hardware design, pulse sequence design, image quality improvement, 

and clinical applications, etc.  

With superior contrast between soft tissues, MRI has become a noninvasive gold 

standard in many clinical applications, such as brain tumor diagnosis, coronary heart 

disease, and breast imaging, etc. Researchers are making effort on combining MRI with 

other applications. One effort is to use MRI to visually assist interventional procedures, 

such as brachytherapy, angioplasty, and invasive procedure, etc. 

However, to safely combine these procedures with the assistance of MRI, the 

devices and instruments has to be specially designed and made in order to be magnetic 

compatible. Titanium is the most common material that is used. Other materials include 

gold, silver, copper, aluminum, nickel, platinum and compounds. These material usually 

have susceptibility of -100~100ppm. Within this range, the material will not experience 

any magnetic force.  

Though these materials are MR compatible, they still have much higher absolute 

susceptibility than the tissue. The high absolute susceptibility alters the nearby magnetic 
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field, resulting severe signal decay due to fast dephasing. Therefore, there is a big black 

hole in the magnitude image, and rapid phase wrap in the phase image around the high 

susceptible objects. The black hole in the magnitude image is usually several times 

larger than the actual size of the devices. And it may be confused with other low signal 

structures in the tissue, which may cause confusion. Therefore, the black hole, as known 

as negative contrast, hinders the accuracy of the procedure, which may result in severe 

consequence. 

In recent years, many researches have been done to turn the negative contrast 

into positive contrast. These methods include pulse sequence design, such as 3D Center-

Out Radial Sampling with Off-resonance Reception (coRASOR) and Inversion-

Recovery with ON-resonant water suppression (IRON) [1, 2], and post-processing 

methods, such as Susceptibility Gradient Mapping (SGM) and SGM using the original 

resolution [3, 4]. 

A property of these materials is the high absolute susceptibility. We propose to 

map the susceptibility of the interventional devices and background tissue to provide 

positive-contrast of the devices. 

The contribution of this thesis is to propose a new method to generate positive 

contrast of the interventional devices using a regularized L1 minimization algorithm to 

improve the accuracy of localization and visualization. Instead of applying gradient echo 

sequences commonly used in susceptibility mapping, we propose to use the spin-echo 

sequence with a shifted 180-degree pulse to acquire high SNR data. A short shift time is 

used to avoid severe phase wrap. A new phase unwrapping method based on Markov 
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Random Field using Highest-Confidence-First algorithm is proposed to unwrap the 

phase image. The phase unwrapping method is capable of dealing with open-ended 

fringelines, which are quite common with rapid phase unwrapping caused by high 

susceptible objects. Then the unwrapped phase images from at least two different shifted 

time are used to calculate the field map. Next, L1 regularized deconvolution is performed 

to calculate the susceptibility map. With much higher susceptibility of the interventional 

devices than the background tissue, the interventional devices show positive-contrast in 

the susceptibility image. 

 

1.1 Thesis Outline 

Chapter 2 is a brief introduction to interventional devices. It provides the 

necessary basic background about different interventional procedures and the devices 

used in these procedures. The difficulties of imaging these devices using MRI are 

addressed. Related researches to provide positive contrast of these devices are 

introduced. The limitations of these works are discussed. Then, I present the motivation 

of solving this problem and the logic flow of the proposed method. 

Chapter 3 introduces the data acquisition using spin-echo sequence with a shifted 

180-degree pulse. Then the phase unwrapping method using a Markov random field is 

presented. The simulation and experimental results are presented and discussed. 

Chapter 4 talks about the localization of the brachytherapy seeds using L1 

regularized deconvolution. The method is introduced and the results are presented. 
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Improved localization and differentiation are achieved using the proposed method for 

brachytherapy seeds. 

Chapter 5 extends the method in Chapter 4 to larger interventional devices. New 

difficulties are present due to the larger size of highly susceptible objects. Furthermore, 

we try to speedup the acquisition time by combining the proposed method with 

compressive sensing. We also introduce a reconstruction method of compressive sensing 

with composite sparsifying transform. Comparing to conventional CS with linear 

summation of sparsifying transforms, this method can provide similar or better 

reconstruction results with shorter calculation time. The simulation results and 

experimental results are presented. The proposed method is capable to deal with larger 

size high susceptible interventional devices.  

Finally, we will sum up the work in Chapter 6. 

  



 

 5 

CHAPTER II  

INTERVENTIONAL DEVICES 

 

2.1 Introduction of Interventional Devices 

The common interventional devices include brachytherapy seeds, needles, stents, 

and markers. 

Brachytherapy is to cure the cancer by inserting radioactive material into the 

tumor, to provide highly localized radioactive therapy without affecting the healthy 

tissue. During and after the surgery of brachytherapy, the location of the brachytherapy 

seeds needs to be identified because the location information will indicate how the 

radioactive material distributes. Another application is the angioplasty. Angioplasty is to 

mechanically widen narrowed or obstructed arteries using a mesh tube, i.e. stent, to 

prevent or counteract a disease-induced, localized flow constriction. The stent insertion 

and evaluation of the treatment requires image assistance. 

These interventional procedures have been widely used, because they can 

provide minimized physical trauma, reduced infection rates, decreased recovery time 

and medical expense. 

The common size, shape, material and susceptibility of the devices are listed in 

Table 2.1. The grey part means the material is not suitable to be scanned by MRI. 
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Table 2-1 The common size, shape, material and susceptibility of the interventional 

devices 

Devices Diamete

r 

Length Material Susceptibili

ty (ppm) 

Pictures 

Brachyther

apy seeds 

0.8mm 4.5mm Ti 182  

Cu -9.63 

Ni 116 

Al 20.7 

Au -34 

Brachyther

apy needles 

1.27mm 

(outer) 

0.84mm 

(inner) 

20cm Ti 182  

Al 20.7 

Plastic -9.3 

Stents 3.0mm 

81μ~120

μ 

thicknes

s 

~20mm Co & Cr 320  

Stainless 

steel 

3520~6700 

Pt & Cr  279 & 320 

Ti 182 

Markers 15mm 3.5mm 

thicknes

s 

Vinyl 

plastisol, 

Vaseline 

-6.65~-5.95      

 

 

The market of interventional devices is huge. Take brachytherapy products for 

example, the US sales were $240 million in 2008 and expected to $1979 million by 

2016. Implantable prostate sees were the largest market segment with sales of 121.5 
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million in 2008, comprising 51% of total brachytherapy sales. Other important 

brachytherapy market segments are partial breast irradiation with sales of $41.7 million 

in 2008. With this big market, there are great needs to provide accurate visualization and 

localization to assist the physicians to plan, perform and evaluate the therapy. 

 

2.2 Imaging Assistant of Interventional Procedure with MRI 

Without measurable harmful effects and good soft-tissue contrast [5], magnetic 

resonance imaging has become a gold standard for many applications. However, due to 

the high magnetic field, metal material should be operated with extreme caution, 

especially the interventional devices. Though some interventional devices are now made 

of MR-compatible material, such as titanium, the high susceptibility will still introduce a 

high local field changes and thus introduce image artifacts.  

Though the metallic material will introduce artifacts, we sometimes need to 

locate the exact location of the metallic material, which is extremely useful in 

interventional radiology. MRI is superior to other imagine modalities due to its high 

contrast between soft-tissues. Therefore, to combine MRI and the interventional 

procedure is of great needs and interests. 

However, there are many problems associated with this combination. Because 

MRI is a high magnetic field, it places specific requirements and limitations to the MRI. 

Any ferromagnetic materials inside the MRI room are harmful, so the surgery tools and 

the implanted devices to perform the interventional radiology should be MR compatible. 

Usually, titanium and other paramagnetic materials can be used in the MRI. However, 
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the susceptibility of these materials are in the range of 20~200 ppm, much higher than 

soft-tissue (-9ppm). This kind of material won’t experience detectable forces or torques. 

However, they increase the magnetic field variation, resulting in faster dephasing of the 

spin in and around the materials [6]. Therefore, the signal decays much faster than the 

background tissue, introducing a black hole around the interventional devices.  

The signal loss will spread out from the location of the interventional devices to 

neighboring region, and results in location uncertainty of several millimeters. This 

artifact will hinder the accuracy of the surgery, especially in the angioplasty where the 

diameter of the vein/artery is only several millimeters. Another drawback of the negative 

contrast (the interventional devices appear to be dark compared to the background 

tissue) is that it increases the difficulty in differentiating the devices with other dark 

features in MR magnitude images. The features include artery (excited blood flow 

moves out of field of view) and natural cavity. One example of this problem is shown in 

[7].  

To solve this problem, it is critical to create positive contrast of these 

interventional devices. The positive contrast can highlight the objects and thus 

differentiate them with background tissue. And this positive contrast can also provide 

accurate localization of the interventional devices. 

 

2.3 Related Research 

Many existing methods have addressed the problem to provide positive contrast 

of paramagnetic structures. A new pulse sequence, inversion-recovery with ON-resonant 
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water suppression (IRON), employs a spectrally-selective on-resonant saturation 

prepulse to provide positive contrast [2]. Another 3D imaging technique, applying 

center-out radial sampling with off-resonance reception (co-RASOR), is also proposed 

to provide positive contrast for small paramagnetic objects [1]. Later on, a new method 

based on co-RASOR is proposed by using a single acquisition rather than on multiple 

acquisitions, and is able to achieve increased efficiency and signal intensity [8]. 

However, these techniques require new pulse sequences and it is hard to implement in 

the clinical scanner. Another draw back of these methods is that the positive contrast it 

provided is by shifting the signal from neighboring region, rather than imaging the 

objects themselves. 

Some post-processing methods are also employed without changing the pulse 

sequence and acquisition trajectories. One simple method is to threshold the high-pass 

filtered phase image to achieve positive contrast, though it is used for cellular imaging 

[9]. In Susceptibility Gradient Mapping (SGM) method, the local susceptibility gradient 

is calculated using a short-term Fourier transform (STFT) for every pixel over a small 

window, which is then used to selectively turn the negative contrast into a positive 

contrast [3]. However, this method reduces the spatial resolution because the 

susceptibility gradient is assumed to be a constant over the window length. An improved 

version of SGM, named SUMO, using a truncated filter in k-space instead of STFT is 

proposed to maintain the original resolution [4]. Though the above methods can provide 

positive contrast of the metallic material, all of them are directly based on the phase 

information or field map. However, the phase information or field map spread out from 
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the brachytherapy seeds to the surrounding tissues. As a result, the positive contrast 

images these methods achieved still don’t reveal the exact location of the seeds. Even the 

error is only several millimeters, it will result in unevenly distributed radioactive 

material which reduces the accuracy of the surgery [6].  

To achieve the positive contrast of the interventional devices with exact location, 

we can take advantage of the high susceptibility of the metallic components. Therefore, 

the method we are going to propose should address the following problems: 

Aim 1: To generate accurate field map from the phase images with high SNR; 

Aim 2: To generate the positive contrast of the interventional devices with 

accurate localization information; 

Aim 3: Validate the location accuracy by comparing with existing methods using 

phantom/ex-vivo data. 

To address the above 3 aims, a method similar to quantitative susceptibility 

mapping (QSM) is applied to calculate the susceptibility of the seeds and background 

tissue [10]. With much stronger signal-to-noise ratio (SNR), Spin Echo sequence with 

shifted 180° pulse is used, instead of Gradient Echo sequence. Then a phase unwrapping 

method is proposed based on Markov Random Field to accurately unwrap the phase and 

reveal the field variation. Then to overcome the low SNR and low data fidelity due to the 

large signal decay around the seeds, we propose to add a weighting matrix and masking 

matrix around the seeds to correctly locate the seeds. Numerical simulation and phantom 

experiments were performed to test the proposed method. We also functionalized SUMO 

method and compare the result of positive contrast. 
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2.4 Methodology 

To address the above 3 aims, the method we proposed to provide positive 

contrast of the interventional devices includes three steps, as shown in Fig. 2.1. 

Fig. 2.1 The flow chart of the proposed method 

The first step is to acquire the field mapping: (1) two or more MR images with 

spin-echo sequence with shifted 180° pulse, because spin-echo images have better SNR 

than gradient-echo images; (2) the phase images are unwrapped using phase unwrapping 

method based on Markov random field model; (3) then the field map is calculated based 

on the unwrapped phase images. The second step is to provide the positive contrast and 

localization of the interventional devices with L1 regularization. The last step is to 

validate the proposed method by performing simulation and experimental study. The 

computer simulation will perform tests on different size, shape and susceptibility of the 

interventional devices to study the feasibility of the proposed method. Then 

experimental data will be acquired from both MRSL 4.7T Varian scanner and TIPS 3T 

Field 
mapping 

•Spin-echo sequence with shifted 180° pulse

•Phase unwrapping using Markov random field model

•Field map calculation using unwrapped phase

Visulization 
and 

localization 

•L1 regularization

•Positive contrast generation by mapping
the susceptibility

Validation 

•Computer simulation

•Phantom and ex-vivo study

•Comparison with co-RASOR
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Siemens scanner with gelatin phantom and animal/tissue phantom. To compare the 

proposed method with existing well-established method, the 3D center-out radial 

sampling with off-resonance reception (co-RASOR) will also be performed on MRSL to 

test the accuracy of the localization. 
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CHAPTER III 

FIELD MAPPING USING PHASE IMAGES 

3.1 High SNR Data Acquisition with Spin-echo Sequence with Shifted 180° Pulse 

3.1.1 Pulse sequence 

Unlike other susceptibility related method, the proposed method doesn’t use 

gradient-echo related sequence. The reason to choose spin-echo sequence over gradient-

echo sequence is because of the high SNR. 

Spin-echo sequence is well known as superior capability to overcome field 

inhomogeneity and susceptibility. 

In the conventional spin-echo sequence, the 90 pulse will tip the magnetization 

into x-y plane, then the dephasing began due to the dephasing gradient, field 

inhomogeneity and susceptibility. The 180 pulse will reverse the effect of the later two, 

thus the signal refocuses at TE. With shifted 180 pulse, suppose the 180 pulse is 

shifted to the left by time t. Now the time between 90 and 180 pulse is TE/2-t, as 

shown in Fig. 3.1, thus the dephasing will recover at TE-2t. But the echo appears at TE 

due to the frequency encoding gradient. Thus the dephasing due to the field 

inhomogeneity and susceptibility will dephase again after its recover. It is equivalent to 

have the effect of field inhomogeneity and susceptibility for 2t, where t can be in the 

order of 0.1ms or even smaller. 
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Fig. 3.1 The spin-echo sequence with shifted 180 pulse 

The advantage of the spin-echo with shifted 180 pulse is that, in gradient echo 

sequence, the effect of field inhomogeneity and susceptibility will in effect for the whole 

TE. However, for high susceptibility for interventional device, the field variation is 

much larger. The phase will be wrapped many times for such a long time as TE. The 

field map recovered from gradient-echo sequence will not be accurate. 

Recently, gradient echo sequence with ultra-short TEs has been proposed to be 

used in this application. However, it requires rapid switching time for the gradients, and 

it is not accessible to some of the MRI machines. 
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In summary, by choosing the spin-echo with shifted 180 pulse, we are able to 

acquire high quality data with the absence of paramagnetic materials. And the sequence 

is well defined and easily accessible in the MRI system or with little modification. 

3.1.2 Parameters selection 

As stated before, t, together with the field map, controls the amount of phase 

into the image. If t is too small, the 2π range is not fully utilized and the field map 

calculation may be degraded because of noise. In the contrast, if t is too large, the 

phase will unwrapped to fast and there might be more than 2π change between two 

neighboring pixels and phase unwrapping method cannot correctly unwrap the phase. 

Therefore, t should be carefully selected in order to correctly calculate the field map 

from phase image. 

To study this, first the field map for brachytherapy seeds and a needle is 

simulated. 

3.2 Phase Unwrapping Using a Markov Random Field Modeling 

3.2.1 Synopsis 

Phase unwrapping is a critical step to utilize the information embedded in phase 

images in many applications of Magnetic Resonance Imaging (MRI). However, robust 

and effective phase unwrapping remains a challenge when open-ended cutline problems 

show up in the phase images. This chapter presents a novel phase unwrapping method, 

which is suitable to unwrap the phase with and without open-ended cutline. Specifically, 
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the image is segmented into regions where within each region the phase is not wrapped. 

Then, the phase is modeled as Markov Random Field variable on the region level. The 

magnitude image is used as a guideline to locate the cutline in the phase image if there is 

any. The phase is unwrapped between different regions by minimizing the global energy 

using a highest–confidence-first algorithm. Results on simulated and experimental MRI 

images show that the proposed method provides similar or improved phase unwrapping 

than the Phase Unwrapping Max-flow/min-cut (PUMA) method, the ZπM method and 

the pole-guided-cutline phase unwrapping method.  

3.2.2 Introduction 

Phase images can provide useful information in many applications of Magnetic 

Resonance Imaging (MRI). For example, phase images can indicate the B0 

inhomogeneities, the inherent chemical shift of the object, the object’s magnetic 

susceptibility, and the velocity of blood flow, or tissue motions [11]. Thus, it can be used 

to shim the magnetic field, map the susceptibility, and measure the flow. 

To reveal the embedded information, phase unwrapping is necessary because 

only the wrapped phase, i.e., phase constrained to [ , )  , is available from a complex-

valued MRI images. Mathematically, phase unwrapping is to determine the correct phase 

ϕ from its wrapped phase ψ, where 

mod( ,2 )            (3.1) 

where mod( )  is the modulus operator. Without additional restrictions, the problem of 

phase unwrapping is ill-posed. Therefore a smoothness condition, named Itoh condition, 

is widely used as a constraint, which assumes the adjacent phase difference satisfied 
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,x y        (3.2) 

where 
,x y  is the phase changes at location (x, y) with respect to its neighbors [12]. 

A variety of phase unwrapping algorithms have been developed during last 

several decades. Broadly speaking, they can be classified into four major categories: 

path following methods [13, 14], minimum-norm methods [15, 16], parametric modeling 

[17, 18], Bayesian and regulation methods [19, 20].  For a comprehensive review of 

phase unwrapping methods, the reader is referred to [21]. For a comparison of different 

methods, the reader is referred to [22, 23]. 

Bayesian and regularization methods model the phase as random variables, and 

the maximum a posteriori (MAP) probability is a popular statistical criterion for 

optimality. Markov Random Field (MRF) model based phase unwrapping [19, 24-27] is 

a class of unique algorithms that belongs to this category. In these methods, the 

smoothness constraint is incorporate in the Markovian property of the phase in a 

neighborhood, or, clique. A potential or energy function is defined on the whole image 

based on the MRF model whose minimization leads to phase unwrapping solutions. This 

approach provides a general mechanism for modeling local contextual dependence, with 

the flexibility to handle effectively both smooth and nonsmooth features.  

In practice, the MRF models and optimization algorithms differ. For example, 

the Phase Unwrapping Max-flow/min-cut (PUMA) method inherits the idea and solves 

the optimization problem by graph cut techniques [25]. It provides an exact energy 

minimization for the clique potentials that are convex, and devises an approximate 

solution for the nonconvex clique potentials due to their discontinuity preserving ability. 
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The method in [26] provides a series of dynamic programming connected by the iterated 

conditional modes (ICM) to reduce the computational complexity of the optimization 

procedure. The method breaks the image into blocks, and uses dynamic programming in 

each block. By setting the block to be a 1-D array, the 2-D optimization problem is 

simplified to a series of 1-D ones. This method can solve the phase unwrapping 

efficiently. The ZπM method [24] performs the phase unwrapping and smoothing at the 

same time. It iteratively calculates the MAP absolute phase estimate with a discrete 

optimization step (Z-step) and an ICM step (π-step). 

These methods have been successfully used in various applications. Nevertheless, 

the phase images can be complicated when open-ended cutline appear in the phase 

image. The open-ended cutline is an edge of 2π phase jump around which a path can be 

found that phase changes gradually/smoothly. The reason of the open-ended cutline is 

insufficient resolution, flow, or noise. The presence of the open-ended cutline is 

unpredictable and it violates the Itoh condition. Therefore a phase unwrapping method 

that can handle both the regular phase image and the ones with open-ended cutline is 

preferred. However, only a few phase unwrapping methods address this problem. [11] 

introduces a pole-guided-cutline phase unwrapping method which designs specific for 

this application. The curl of the phase is calculated to identify poles that are formed by 

2x2 pixels with only one phase wrap. By setting the phase to 0, the poles move 

following the cutline until two poles reach and annihilated. Then the phase of the whole 

image is shifted by some degree, and a new cutline is chased. A score map is obtained by 

repeating this process. And the cuts are found by finding the skeleton of the score map. 
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As stated by the author, once the cuts are found, the phase unwrapping can be performed 

in any fashion. 

This chapter presents a novel phase unwrapping method, taking advantage of the 

magnitude image. There are two unique features of the method: I. the segmented regions 

are modeled as MRF variables instead of using pixel-level MRF only, which 

significantly improves the computation efficiency; II. it uses a highest-confidence-first 

(HCF) optimization method and the information from magnitude image to locate the 

cutlines with the most reliability. The simulated and experimental MRI images are used 

to test the proposed method. The results show that the proposed method provides similar 

or improved phase unwrapping than the method in [26], the Phase Unwrapping MAx-

flow/min-cut (PUMA) method and the ZπM method.  

3.2.3 Theory 

A cutline is the borderline where 2π phase jump appears. A closed cutline can be 

easily removed from the wrapped phase image by adding or subtracting 2π to every pixel 

within the cutline. Many conventional phase unwrapping methods just assume every 

cutline in a phase image is closed, because it is straightforward and efficient for most of 

the cases. However, when the cutline is open-ended, these methods will produce obvious 

wrong results, as shown in Fig. 3.2 (b-d). 

The phase unwrapping becomes complicated when open-ended cutline exist. (i) 

It is difficult to figure out whether the cutline is closed or open-ended. The conventional 

methods will. (ii) The cutline will move when a background phase shift is applied. Fig. 

3.2 (a, e) are the phase image from a same complex random field, and π/3 shift is applied 
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on (a) to achieve (e). The cutline moves and the unwrapping method provided by 

MATLAB provides different results. (iii) A phase jump will appear in the unwrapped 

phase image, however, there are no obvious criteria to locate the phase jump. 

 

 

Fig. 3.2 (a) A wrapped phase generated from a low-pass-filtered complex random 

field and (e) shifted with π/3. The phase unwrapped using (b, f) 2D Goldstein 

Branch Cut Phase Unwrapping method, and (c, g) 2D Quality Guided Phase Path 

Following Phase Unwrapping method, and (d, h) Phase unwrap method provided 

by MATLAB. 

 

The open-ended cutline in MRI is due to several reasons. The resolution is low 

which cannot provide smooth change over rapid phase changing area. (ii) Noise 

introduces randomly fluctuation, especially in low signal area.  
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The open-ended cutline cannot be neglected because it cannot be removed by 

high-pass filter. As shown in Fig. 3.3(a), a wrapped phase image from a 3D fast spin-

echo sequence with a 180-degree inversion recovery prepulse. A clear open-ended 

cutline is shown in the skull. Fig. 3.3(b) shows the processed phase with a high-pass 

filter, as shown in Fig. 3.3(c), applying in the k-space. The open-ended cutline is not 

removed. Therefore, it is critical to handle the open-ended cutline correctly in order to 

acquire accurate susceptibility weighted imaging and field mapping. 

 

 

Fig. 3.3 (a) A wrapped phase with open-ended cutline, and (b) its high-pass filtered 

phase using (c) a high-pass filter in k-space. 

 

Many cutline detection phase unwrapping methods are proposed for 

Interferometric synthetic aperture radar (InSAR), and thus no magnitude image available 

for them to use. Since there is a correlation between the phase image and magnitude 

image in MRI, it is a predominance to take advantage of the magnitude image. The 

physical prior of the proposed method is to assume that the open-ended cutline happens 

at the boundary of the tissue. 
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The basic idea of the proposed method is to segment the phase image into 

regions within which the phase is not wrapped, and then perform phase unwrapping 

between different regions using a highest-confidence-first algorithm to optimize the 

MRF model. Fig. 3.4 presents the flow chart of the proposed phase unwrapping method. 

Details of the steps will become clear in the rest of this section. 

3.2.4 Image preparation 

This is a preprocessing step to properly scale the phase image and remove the 

redundant areas in the image. For example, if the phase data is saved in a DICOM 

format with 16 bits, it needs to be scaled to be within [ , )  . 

 

 

Fig. 3.4 Flow chart of the proposed phase unwrapping method. 
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In MRI, parts of the image are background, for example, area outside the 

anatomy. These regions should be removed for improved efficiency and reliability. To 

do so, high-contrast magnitude image can be used if it exists, or the phase image itself 

can be used. In this chapter, a Gaussian filter and thresholding is applied after the 

magnitude image is normalized. Then, morphological operators, such as erosion and 

dilation, are used to fill the holes in the image and to clean out isolated dots [28].  

3.2.5 Segmentation 

The purpose of the image segmentation stage is to identify the region within 

which the phase is not wrapped. Segmentation is carried out in two steps. 

The first step is to mask out the background, in order to eliminate unreliable data 

and reduce unnecessary calculation. High-contrast magnitude image can be used if it is 

exist, or the phase image itself. A Gaussian filter is first utilized to overcome the effect 

of noise, and then threshold segmentation is applied. The holes in the structure are filled. 

Isolated dots in the background are cleaned out. Only one connected region is left for 

next step. The operations are performed using morphological operators erode and dilate.  

The second step is to segment the phase structure, to eliminate phase wrap in 

each region. This can be achieved by restricting the range of the phase within one region 

to be smaller than 2π. 

The segmentation can be carried out by many methods. In this work, a 2-

threshold method [29] is used for simplicity. Specifically, the pixels in the phase image 

is first classified into T  categories,
( 2)
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( 2)
[ ,  )

T

T


 


 , using a simple thresholding procedure. When T = 2, the phase should 

follow the Itoh condition in order to be correctly unwrapped. However, if there is 

cutlines,   T > 2 should be used. Other segmentation methods could also be used, at the 

price of longer computational time. 

When the image is noisy, the thresholding method could result in many segments. 

A high pass filter is applied before the segmentation to find out the noisy pixels and 

eliminate by adding or subtracting 2π. 

After segmentation, a matrix, named category matrix, with the same size of the 

phase image, is used to record the category of each pixel. Then, an indexing process is 

carried out to segment the pixels into several connected regions [30]. Basically, the 

algorithm makes two left-to-right, up-to-down passes over a binary image: the first pass 

is to assign temporary indices by checking only the left and up pixels, and to record 

equivalences if both the left and up pixels belong to a connected region. The second pass 

is to confirm the temporary indices with no equivalence, to replace the higher ones by 

their lower equivalence, and to squeeze the unused indices. The procedure is repeated T 

times, each time for a specific category in the category matrix.  

After the segmentation and indexing process, the image is segmented into R 

regions. The region index for a specific pixel 
  
(x, y,z)  is denoted as 

  
m

x,y,z
, where 

, ,1 x y zm R  . 
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3.2.6 Phase modeling using MRF 

For each pixel, the correct phase  , i.e., unwrapped phase, and the wrapped 

phase   are related by 

, , , , , ,2x y z x y z x y zf         (3.3) 

where 
  
(x, y,z)  is the location of the pixel, and 

  
f

x ,y ,z
 is an integer where 

, , { ,..., 1,0,1,..., }x y zf L L    with L being determined by the number of wraps in the phase 

image. 

Let 
, ,{ | 1,2,..., ;  1,2,..., ;  1,2,..., }x y z x X y Y z Z      and 

, ,{ | 1,2,..., ; 1,2,..., ; 1,2,..., }x y z x X y Y z Z     , where X *Y *Z  is the size of the image. The 

phase unwrapping problem can be posed as finding   given  . In the MRF model in 

this work, the correct phase is treated as a random variable that can only take finite 

possible values as defined in Eq. 3.3 [31, 32]. With this formulation, the correct phase 

can be estimated using a maximum a posteriori (MAP) estimator, 

^

arg max ( | ) arg max ( ) ( | )p p p
 

            (3.4) 

where ( )p   denotes the prior probability, and ( | )p    is the likelihood function [26].

 Because the value of   for a given   is determined by Eq. 3.3, Eq. 3.4 becomes  

^

arg max ( )p


        (3.5) 

Hammersley-Clifford theorem [31, 33] states that an MRF has an equivalent 

Gibbs distribution where 

( ) exp( ( ))p U         (3.6) 
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where ( )U   is an energy function. Therefore, the MAP problem of Eq. 3.5 is transferred 

to an energy minimization problem. 

^

arg min ( )U


        (3.7) 

A variety of functions have been studied in literature. A common-used function 

is based on the square of the difference between adjacent pixels. 
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2

, , ', ', '

1 ( ', ', ')
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( ) ( )
x y z

x y z x y z

x X x y z N
y Y
z Z

U  
  
 
 

        (3.8) 

where 
  
N

x ,y ,z
 is the set of all neighbors of pixel 

  
(x, y,z) . A typical 6-neighborhood system 

is shown in Fig. 3.5. An image acquired with 2DFT is a simplified case of the image 

acquired with 3DFT, where Z=1. A series of multiple slice 2D images can be unwrapped 

repeatedly using the proposed method. Due to the fact that 
, ,x y z  is related to the observed 

and wrapped phase 
, ,x y z  by Eq. 3.3, the above energy function can be equally defined as 

, ,

2

, , , , ', ', ' ', ', '

1 ( ', ', ')
1
1

( ) ( 2 2 )
x y z

x y z x y z x y z x y z

x X x y z N
y Y
z Z

U F f f   
  
 
 

        (3.9) 

where 
  
F ={ f

x,y,z
| x =1,2,..., X ; y =1,2,...,Y;z =1,2,...,Z}. This energy function serves as the 

quantitative measure of the global quality of the solution and also as a guide to the 

search for a minimal solution [31]. 
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Fig. 3.5 Illustration of 6-neighborhood system and the sic cliques that contains pixel 

(x,y,z), marked as dashed ellipses.  

 

A unique feature of the proposed method is the recognition that the labels { f
x ,y ,z

} 

for all pixels within a specific region should be identical. Given that during the 

segmentation step the phase variation within a region is restricted to be 
2

T


 where 3T  , 

it is straightforward to see that there is no phase jump larger than 
2

3


 exists within the 

same region. Therefore, the integers of 2π phase jump as described in Eq. 3.3 must be 

the same for all pixels in a region. Otherwise, the phase variation will be larger than 
2

3


.

 For simplicity, mf will be used to refer to the label for all pixels in region m . 

Therefore, the label of a pixel 
  
(x, y,z)  is related to mf  by 

  
f

x ,y ,z
= f

m
x ,y ,z  where 

  
m

x,y,z
 is the 

region index. With this simplification, one can refine the energy function in Eq. 3.9 as  
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where mB  is the set of border pixels in the m -th region, 
  
N

x ,y ,z
 is the set of all neighbors 

of pixel 
  
(x, y,z) , and mN  is the set of all neighboring regions of the region m . 

The neighborhood of a region can be more complicated than that of pixels 

because more regions could be the neighbors of a particular region. An illustration of a 

possible neighborhood of regions is shown in Fig. 3.6. 

 

 

Fig. 3.6 Illustration of the neighborhood of regions: the orange and green regions 

are both the neighbors of blue region. Pixel 1 is used twice for phase difference 

calculation between orange region and blue region, and pixel 2 is used once for 

phase difference calculation between green region and blue region  

 

3.2.7 Model optimization using HCF 

With the energy function defined in Eq. 3.10, a series of energy minimization 

methods could be carried out to find the optimal labels F . Here we choose the highest-
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confidence-first (HCF) method, a deterministic algorithm for combinatorial 

minimization [31, 34].  

HCF uses a strategy to optimize the energy function from the least “stable” 

regions. These regions normally correspond to the areas with least ambiguity and small 

noises. The stability is determined based on the commitment status of the region and its 

neighbors in addition to their phase values. Specifically, a binary flag {0,1}C   is 

introduced to record the commitment status where 0 represents uncommitment and 1 

commitment. mc C  is the commitment flag for the region m . Initially, all flags are set to 

zeros. Once a region is committed, it cannot go back to 0. 

As an intermediate step, an energy function for the m-th region is defined as 

2

( , , ) ( ', ', ')

( ) ( 2 2 )
m m n

m m n m m n n

n N x y z B x y z B

E f c f f   
  

         (3.11) 

The stability of the region mS  represents the energy barrier and is defined as 

min
min

,

,

min [ ( ) ( )]
,      if c 0

( )
  min [ ( ) ( )] ,      if c 1

m

m m
m

l L l lm m

m m m m

l L l f

E l E l

S f
E l E f

 

 

 


 
 



    (3.12) 

where
min arg min ( )m

l L
l E l


 . For an uncommitted region, mS is the negative difference 

between the lowest and the second lowest local energies. The negative stability means 

there is room for improving. The greater mS  is, the more energy it will give out when 

committed. Therefore it is more confident to commit the label to be
min

mf l . For a 

committed region, mS  is the difference between the current local energy and the lowest 

possible energy due to any other label. Greater mS  indicates more stable label. The 

stability of a committed region could go back to negative due to the commitment of its 
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neighbors. Once the stability goes back to negative, the label mf  needs to change to 

some other values in order to be stable. 

To formulate this process, let arg min ( )m m

m
k S f  is the least stable region. If the 

region k  is not committed, the label of region k  is committed to 

arg min ( )k k

l L
f E l


  when 0kc       (3.13) 

If the region is already committed, change the label to a new one 'kf  according to 

'

,
arg min [ ( ) ( )]

k

k k k k

l L l f
f E l E f

 
   (3.14) 

The following steps are how the HCF works. Initially, kf  is set to be 0 for all 

regions, which means without phase unwrapping, k k  . As defined, only the 

committed regions have effect on the neighbors. When no neighbor is active, the energy 

measure reduces to 0. Therefore, the first region to be committed needs to be assigned to 

serve as a seed. In this work, the largest region after segmentation is chosen to be the 

first, and its label is set to be 0. The label is committed by minimizing the energy kE

except for the first seed whose label is committed to be 0. Since the label of the seed 

region is committed, the stability of its neighbors will be updated. The stabilities of all 

regions are ranked and the region with smallest stability is selected to get committed 

next. This process repeats until all regions have non-negative stability. To illustrate the 

algorithm, a detailed list of steps is shown in Table 3-1. 

To evaluate the performance of the proposed algorithm, the error rate (ER) and 

computation time is used, and comparison with the method in [26], PUMA and ZπM 

methods is conducted. The error rate is defined as the percentage of pixels for which the 
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unwrapped phase is different from the correct phase. The pixels in background are not 

processed and therefore are not taken into account in computing the ER. 

Table 3-1 The detail procedure of the HCF method 

Initialization: 0mf  , 0mS  , and 0mc  , for 1,2,...,m R ; 

1: Select the largest region as a seed, set the label 0seedf  , flag 1seedc   

2: Update seedS  and all its neighboring regions 

3: Sort S

4: While (the smallest stability is negative) 

5: { k  = index of the region with smallest stability; 

6: Set min ( )k k

l
f E l ; 

7: Update stability of region m , ( )k kS f ; 

8: For each kn N

9: {Update ( )k kS f ;} 

10: Sort the stability of all regions;} 

3.3 Field Mapping 

The Larmor frequency is proportional to the local magnetic field, resulting in 

difference of phase. The field map can be calculated using 2 1

2 1( )
B

TE TE

 




 


. With the 
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correct phase, the field map can be easily achieved. 

The field map is a critical step to map the susceptibility, which is extremely 

useful in brachytherapy MRI. 

3.4 Results 

This computed simulations and the phase unwrapping procedure were performed 

offline using MATLAB (Math Works, Natick, MA). First, the normal phase images 

without open-ended cutline from simulation and experimental data are used to test the 

proposed method of handling regular phase unwrapping problem. The method in the 

method in [26], the PUMA method, and the ZπM method are used for comparison. Then, 

an experimental image with open-ended cutline is used to test the proposed method of 

handling no-solution problem. The method specific for cutline problem is also tested in 

this case. 

3.4.1 Simulated data 

A two-dimensional parabola pattern phase was generated to simulate a normal 

MRI phase image without cutline. The phase is a function of distance from the center 

and modulus by 2π, as shown in Fig. 3.7 (a). The image size is 128 x 128. For region 

segmentation, T was set to 3. The segmented regions are shown in Fig. 3.7 (b) where the 

intensity reflects the region index numbers. Fig. 3.7 (c) shows the unwrapped phase 

using the proposed algorithm. The phase decreases linearly with the radius, as expected. 
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Fig. 3.7 Phase unwrapping a simulated MRI phase image: (a) simulated image with 

phase wrapping; (b) segmented regions with intensity corresponding to the region 

index; (c) unwrapped phase image using the proposed method; (d) simulated image 

with noise yields SNR = 1.5; (e) segmented regions with intensity corresponding to 

the region index without passing through a high-pass filter; (f) unwrapped phase 

image using the proposed method.  

 

To further demonstrate the capability of the proposed method, random variations 

yielding signal-to-noise-ratio (SNR) of 1.5 were added to the phase image. The added 

variances are uncorrelated Gaussian noise. Introduction of these variations makes phase 

less “smooth” and more difficult to unwrap. Fig. 3.7(d-g) is the procedure dealing with 
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the noisy case. The number of segments in Fig. 3.7(f) is 873, comparing to 947 in Fig. 

3.7(e). The computational time is decreased accordingly. Fig. 3.7(g) shows the proposed 

method unwraps the noisy image correctly. 

To compare with other phase unwrapping methods, SNR of 20, 2.0, 1.5, and 1.0 

were added to the phase image. The phase images were unwrapped by the proposed 

method, the method in [26], the PUMA method and the ZπM method. The ER of the 

results were calculated. To calculate ER, the true phase was defined as the parabola 

pattern with Guassian variations. The ER from all four methods is listed in Table 3-2. 

Table 3-2 The error rate (%) of the proposed method, the method in [26], the PUMA 

method and the ZπM method. 

SNR RB-MRF Method in [26] PUMA ZπM 

20 0 0 0 0 

2 0 0.03 0 0 

1.5 0 0.07 0.02 0.03 

1 0.49 1.02 0.98 0.54 

Fig. 3.8 (a) provides the computation time of the four methods with image size 

128*128 and SNR ranges from 1.5 to 100. The figure shows the proposed method has 

the comparable computational time. The computational time for the proposed method 

increases for low SNR. This is because the computation complexity of the proposed 

method is proportional to the number of segmented regions. 
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Fig. 3.8 Computation time for the proposed method, the method in [26], the PUMA 

method, and the ZπM method with SNR ranges from 1.5 to 100. 

 

3.4.2 In-vivo MRI brain images 

The proposed method was also tested using a set of in-vivo MRI brain images of 

a healthy male volunteer. The MR image was acquired using fast 3D fast spin-echo 

sequence and an 8-channel receive-only head coil with the subject staying in a supine 

position. The data acquisition parameters are: data matrix 256 x 256, TR = 2000 ms, TE 

= 8.5 ms, length of echoes = 16, number of slices = 32, FOV = 20 x 20 cm
2
, slice 

thickness = 4 mm, RF receiver bandwidth = 32 kHz, and no data averaging. 



 

 36 

The original phase image and unwrapped result by the proposed method are 

shown in Fig. 3.9 (a) and (b), respectively. The same image was also unwrapped by the 

method in [26], the PUMA method and the ZπM method. The results are shown in Fig. 

3.9 (c), (d) and (e), respectively. The PUMA method performed well when the 

background noise exists, but an abrupt 2π jump exists in the unwrapped phase image. 

The method in [26] and the ZπM method provided comparable results for this image. 

However, the unwrapped phase in gray matter in these images are not as uniform as the 

one from the proposed method. The reason is that the phase in gray matter is affected by 

some phase jumps close to π in the neighboring regions such as the skull and the white 

matter. A slightly over π difference may be recognized as a phase wrapping and a 

slightly under π difference as smooth. If the phase unwrapping methods cannot handle 

this well, it will result in 2π jump in a smooth region. The proposed method is superior 

in addressing this regard. 
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Fig. 3.9 Phase unwrapping an in-vivo brain MRI image: (a) original phase image; 

(b) unwrapping phase image by the proposed method; (c) unwrapping phase image 

by the method in [26]; (d) unwrapping phase image by the PUMA method; and (e) 

unwrapping phase image by the ZπM method. 

 

3.4.3 Phase image with cutline 

The four methods are also tested on another MRI data set. The data was acquired 

using a 3D fast spin-echo sequence with a 180-degree inversion recovery prepulse. All 

parameters are the same as previous data set except the setting of inversion time TI = 

450 ms. The image is shown in Fig. 3.10 (a), and the unwrapped results are shown in Fig. 

3.10 (c - f) for the proposed method, the method in [26], the PUMA method, and the 
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ZπM method, respectively. Fig. 3.10 (a) represents a typical problem in phase 

unwrapping: the image violates the smoothness condition, as mentioned in the 

introduction. The white arrow points to a region where phase is gradually increasing 

from up-left to downright direction. The black arrow points to a region where phase is 

gradually decreasing. The hatched arrow points to the boundary of the phase jump. This 

represents a very challenging scenario for phase unwrapping. The image shown in Fig. 

3.10 (a) can be simplified as the disk in Fig. 3.10 (b). The phase increases clockwise and 

phase wraps at the right middle region. This could be due to some rapid phase change at 

some areas in between. As a result, it does not have an exact solution for phase 

unwrapping. If the phase is treated in a voxel-by-voxel fashion, it may result in endless 

iterations. However the proposed method seeks for an optimum solution and locates 

phase jump at some boundary of region, which is more acceptable. 
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Fig. 3.10 Phase wrapping an image that violates the smoothness constraint: (a) 

original phase image; the image contains regions that are challenging to unwrap 

(see text) as pointed by the arrows, (b) inset illustrating the problem in (a). There is 

no correct solution as the phase unwrapping will result differently if it follows a 

clockwise path or a counterclockwise path. The unwrapped phase image shown in 

(c-g) is from the proposed method, the pole-guided-cutline method, the method in 

[26], the PUMA method, and the ZπM method, respectively. 
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3.4.4 Phase unwrapping for interventional devices 

The proposed method is also applied to the interventional devices, as shown in 

Fig. 3.11. Though interventional devices introduce fast dephasing in conventional MRI 

images, the spin-echo sequence with a shifted 180˚ pulse reduces phase wrapping around 

the interventional devices by using a small shifted time. Thus, the proposed phase 

unwrapping method can unwrapped the phase image with minor error, thus obtain 

relatively accurate field maps. 

Fig. 3.11 Phase unwrapping of brachytherapy seeds. (a) The wrapped phase; (b) the 

unwrapped phase using the proposed method. 

3.5 Discussions 

Highest-confidence-first is a local optimization method for MRF. Though a 

global minimization is preferred, there is no known efficient algorithm available. In 

reality, one is always facing one of two choices: (1) to find the exact global minimum 
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with possibly intolerable computation expense or (2) to find some approximations with 

much less cost [31]. The methods for local minimization are quite mature, thus in this 

proposed method, a local optimization, instead of a global one, is chosen to perform the 

phase unwrapping. 

The aim to segment phase image into regions is to avoid unnecessary calculation 

within smooth region. For traditional pixel-based phase unwrapping methods, the 

number of cliques for one pixel is four in 2D images or six in 3D images. With the 

arbitrary regions, how robust the proposed method can introduce to the phase 

unwrapping depends on the complexity of the image. The number of cliques for one 

region could be one, or larger than 6. For the proposed method, update of the stability is 

needed every time a label is confirmed. For very noisy images, the number of the 

segmented regions may be large, which will increase the computation expense. 

Therefore, more advanced segmentation algorithms might be needed in such scenario. 

Another factor that impacts computation efficiency is that once a region is 

committed, all its neighbors need to update stability and sort. The cost function in the 

proposed method is the summation of square of neighboring difference, which is 

proportional to the number of neighboring pixels. So does the stability. Therefore, the 

neighboring region with more adjacent pixels and less close values may be chosen as the 

next one to get committed. A parallel version of HCF could decrease the computation 

time. 

The proposed method is programmed in C language and compiled in Matlab, as 

the method in [26], the PUMA and ZπM methods do. The computation time of the 
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proposed method is regarded as comparable to that of the other three methods, but 

acceptable to our experiments since it only takes within a second. 

The proposed method is demonstrated using simulated and in-vivo MRI images, 

but it is expected to be effective for other phase unwrapping appliances as well. The 

future work is to test other possible potential function, to extend this method to 3D and 

to implant it on parallel computations plat forms. 

 

3.6 Conclusions 

A novel phase unwrapping method based on a region-based Markov Random 

Field model was presented. The method segments the phase image into regions, and 

phase unwrapping is performed between regions using a highest-confidence-first method. 

Results on simulated and experimental MRI images showed that this method provides 

similar or improved phase unwrapping than the method in [26], Phase Unwrapping 

MAx-flow/min-cut (PUMA) method and ZπM method. The proposed method is 

expected to be useful for other phase unwrapping applications. 



 

 43 

CHAPTER IV 

LOCALIZATION OF BRACHYTHERAPY SEEDS IN MRI BY MAPPING THE 

SUSCEPTIBILITY* 

 

4.1 Introduction 

4.1.1 Difficulty in localization of brachytherapy seeds 

Brachytherapy eliminates malignant cancer cells by inserting radioactive seeds 

directly into the tumor as a localized treatment.  For biocompatibility, the shell of the 

seeds is normally made of titanium, which has a magnetic susceptibility of 182 ppm. 

Imaging plays a significant role in brachytherapy, including locating the tumor, serving 

as guidance during seed insertion, and providing post-surgery evaluation. Ultrasound 

and CT are routinely used for these purposes because of their speed and relatively low 

cost.  

In recent years, MRI has been explored as a new imaging tool in brachytherapy, 

due to its superior image quality and soft-tissue contrast. As early as the 1980’s, MRI 

has been used to plan the treatment of brachytherapy [35-37]. In 2000, brachytherapy 

was conducted on 43 patients with prostate cancer using an open MRI, and a larger 

coverage of the tumor volume was cured by the treatment [38]. In 2004, ten prostate 

brachytherapy surgeries were conducted with the assistance of MRI in every stage of the 

procedure and documented in detail [39]. This demonstrates the feasibility and 

 
                                                                                1 

*Reprinted with permission from “Susceptibility-Based Positive Contrast MRI of 

Brachytherapy Seeds” by Ying Dong, Zheng Chang, Guoxi Xie, Gregory Whitehead, and Jim 

X. Ji, 2014. Magnetic Resonance in Medicine, Copyright [2014] by Wiley Periodicals, Inc..  
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superiority of using MRI as the guidance imaging modality. In 2006, combined X-ray 

and MRI were applied to clinical research in another group, showing an improved 

localization and differentiation when compared to Ultrasound or CT [40]. MRI can also 

be used for dosimetric evaluation, which requires the knowledge of the locations and 

distribution of the implanted seeds relative to the organs and cancer volume. 

Nevertheless, the high susceptibility of the metallic shell of the brachytherapy seeds 

introduces severe signal loss around the seeds on conventional MR images. The 

equivalent susceptibility of the whole brachytherapy seed (shell + radioactive core) is 

about 50 ppm, which can increase the magnetic field variation and result in faster 

dephasing of the spins around the seeds [6]. Therefore, the signals from the nearby 

tissues decay much faster than those from other areas, thus introducing black holes in 

and around the seeds. These can be seen from the literature on brachytherapy 

applications and studies to simulate and validate the image artifacts of the brachytherapy 

seeds [39-43].  

4.1.2 Related work to provide positive contrast 

As a result of these artifacts, it is sometimes difficult to differentiate the seeds 

from other dark features in the MRI magnitude image, such as arteries (excited blood 

flow moves out of the field of view) or natural cavities [7]. Many efforts have been made 

to create the positive-contrast MR images to improve the visualization of the seeds in 

MRI. For example, a new pulse sequence, Inversion-Recovery with ON-resonant water 

suppression (IRON), employs a spectrally-selective on-resonant saturation prepulse to 

provide positive contrast of the off-resonance tissue areas [2]. Recently, a center-out 
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RAdial Sampling with Off-resonance Reception (co-RASOR) method was proposed to 

provide positive contrast for small paramagnetic objects by shifting the signal toward the 

object’s center using off-resonance reception [1]. Later on, an improved version of co-

RASOR was proposed that uses a single acquisition and off-resonance reception [8]. Co-

RASOR methods generally require the knowledge of an appropriate susceptibility value 

to correctly shift the off-resonance signals to the location of the object. All above 

methods require significant alternation of pulse sequences, and they may not be 

straightforward to implement on clinical scanners. In addition, several post-processing 

methods have been developed to address this problem. One method achieves positive 

contrast by thresholding the high-pass filtered phase image, though it is only used for 

cellular imaging [9]. In the Susceptibility Gradient Mapping (SGM) method, the local 

susceptibility gradient is calculated using a Short-Term Fourier Transform (STFT) over 

a small window, which is then used to selectively turn the negative contrast into a 

positive contrast [3]. This method reduces the spatial resolution because the 

susceptibility gradient is assumed to be constant over the window width. An improved 

version of SGM, named SGM Using the Original resolution (SUMO), uses a truncated 

filter in k-space instead of STFT so that the original resolution is maintained [4]. Though 

the above methods can provide positive contrast of the metallic shells, they are based on 

the phase of field perturbation due to the seeds, which spread out from the seeds 

themselves. As a result, the positive contrast regions from these methods extend to much 

larger areas than the seed itself, which can potentially cause localization errors or 

misinterpretations. 
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In this chapter, a new method to generate susceptibility-based positive contrast 

MRI for visualizing brachytherapy seeds and highlight the seeds at their exact location is 

proposed. This method directly maps the susceptibility, an inherent property of the 

seeds. Due to the high susceptibility values and physical size of the seeds, existing 

Quantitative Susceptibility Mapping (QSM) methods that were developed mostly for 

Super Paramagnetic Iron Oxide (SPIO) or naturally occurring iron-induced susceptibility 

cannot be straightforwardly applied to this problem [10, 44-47]. In this chapter, a 

method that uses equivalent ultra-short TE spin-echo sequences and an improved 

susceptibility mapping technique is presented for this application. An appealing aspect 

of the method is that signals from the surrounding areas are used to derive the 

susceptibility of the seeds where signal magnitude is low. Specifically, a unique 

weighting matrix and a masking matrix are applied to overcome the low SNR and low 

data fidelity due to the rapid signal decay around the seeds. Numerical simulations and 

phantom experiments show that the proposed method provides positive contrast for the 

seeds at the exact seed locations, thereby demonstrating its benefits compared to the 

existing methods. The research is based on the preliminary work reported at a 

conference [48]. 

 

4.2 Theory 

Modeling of the magnetic field due to a known susceptibility distribution in an 

external magnetic field has been extensively studied in the literature. Various methods 

have also been proposed to measure the susceptibility using MRI [10, 45, 46]. 



 

 47 

Specifically, the magnetic field due to an object of arbitrary shape can be modeled as the 

convolution of its susceptibility distribution with the dipole kernel [44, 46, 49, 50]: 

     (4.1) 

where   ( ) is the field map with respect to   , i.e.   ( )  ( ( )    )   ,  is 

the dipole kernel, and  is the susceptibility distribution, which can be derived from 

the measured   ( ) by a deconvolution. The direct way to calculate  using Fourier 

domain decovolution is known to be difficult due to the singularity and ill conditions 

[51]. Methods to address this problem, including the one in this chapter, often rely on 

numerical regularization. Interested readers are referred to [44-46]. Mostly related to the 

work presented here is the regularized L1 method presented in [46], where L1 

minimization is used to regularize the solution of the inverse problem of Eq. 4.1. 

Anatomical information is used to define a masking matrix to further improve the 

solution. 

A notable feature of existing susceptibility mapping methods is that a relatively 

long echo-time, e.g. 5~20ms, is usually used. Such echo-times are optimized for 

applications where susceptibility due to SPIO or naturally occurring iron is to be mapped. 

When they are directly applied to the brachytherapy seed imaged by MRI, severe signal 

loss in the regions near the seeds occur, making it necessary to use very large 

regularization, which can compromise the integrity of the solution. 
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4.3 Methods 

The proposed method consists of two major components: (I) a data acquisition 

scheme that allows field mapping of areas near high susceptible seeds, where signals are 

subject to severe T2
*
 decay; and (II) an improved sparsity-driven regularization 

framework that makes it possible to derive the susceptibility distribution of the seeds 

themselves, even though the signals in the immediate vicinity of the seeds are almost 

completely lost. 

4.3.1 Data acquisition using SE sequence with shifted 180 pulse 

A Spin-Echo (SE) sequence with shifted 180 pulse is used in the proposed 

method to acquire the data. SE sequences yield data with higher SNR and minimal 

distortion when compared to many Gradient Echo (GE) pulse sequences. More 

importantly, SE sequences allow the collection of phase information with equivalent 

ultra-short echo shifts. Instead of being in the center of the echo time, the 180 pulse is 

shifted by , which can be very short and is defined as positive if it is shifted towards 

the excitation pulse [52-54]. The susceptibility-induced phase only accumulates for  

instead of the entire TE.  

4.3.2 Susceptibility mapping with regularized L1 minimization 

The mathematical framework is similar to the method presented in [46, 55, 56], 

which is based on the regularized L1 minimization, where  in Eq. 4.1 is obtained by 

    (4.2) 

shiftT

2T
shift
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where  is a weighting matrix,   is a regularization parameter,  is a masking 

matrix, and  is a first order gradient operator to promote sparsity. Here,  is 

calculated by normalizing the magnitude image. This is based on the assumption that 

low signal will yield low SNR, and thus low reliability. Because of very high seed 

susceptibility, data in the immediate vicinity of the seeds contains little useful 

information. With low magnitude and rapid phase wrapping, the phase information is not 

reliable. Therefore, a weighting matrix is used to lower the weight of the unreliable 

information around the seed for the data consistency term. 

Though similar formulation has been proposed in [46, 55, 56], the rational and 

the definition of  in the proposed method are different. In [46], is defined based on 

the assumption that edges in the magnitude image and in the susceptibility map should 

generally appear in the same locations if homogeneous regions in the magnitude image 

also have homogeneous susceptibility. The small size and high susceptibility of the seeds 

necessitate affect the definition of . Specifically, mask  is defined to exclude all 

areas that may contain highly susceptible objects and their vicinities, which avoids over-

smoothing in these areas. At the meantime, it also allows the regularization to provide 

artifact removal and denoising at the pixels far from the seeds. Mask  is derived by 

thresholding the magnitude image. The magnitude of signals from the susceptible 

objects and its surrounding tissues is low, and the mask will exclude them from the 

regularization term in Eq. 4.2. In this work, the threshold is experimentally set to be 20% 

of the maximum voxel magnitude. It is noteworthy that the mask  does not need to 

exactly match with seed locations. It could be larger or smaller than the seeds, or at a 
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location with no seed inside. Unlike other QSM techniques, the proposed method does 

not require an accurate calculation of seed and surrounding tissue susceptibility to 

produce an image. Therefore,   can be chosen from a relatively large range without 

affecting the performance. Note that  in Eq. 4.1 is defined over the whole field of 

view, including the areas where =0. 

Solution to Eq. 4.2 is obtained by first setting the first-order derivative to 0, 

(4.3) 

where is the conjugate transpose of the operator/matrix. The L1 norm is not continuous 

at . Therefore, a small regularization number is added to make it continuous, 

and thus differentiable [57]. The approximation of Eq. 4.3 becomes 

(4.4) 

where  is a diagonal matrix  with  as the diagonal elements, 

where   is a small positive number, experimentally set to 10
-15

.  Then Eq. 4.4 is solved

iteratively using a nonlinear conjugate gradient method [57]. The introduction of   

makes  positive definite, therefore the solution converges within a finite number of 

iterations. The iteration stops either when the gradient is smaller than a preset threshold 

or when the maximum number of iterations is reached. 

4.3.3 Computer simulations 

To evaluate the performance of the proposed method, synthetic MRI data with a 

known susceptibility map were generated using computer simulations and then 
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H

 T

 T



 

 51 

processed using the proposed method. Images with different seeds orientation and 

spacing, spatial resolution and noise levels were simulated. To simulate the images, a 

high-resolution susceptibility map was first constructed according to the structure of the 

brachytherapy seeds. The structure of the seeds is very delicate, with multiple layers that 

are several micrometers thick, as shown in Fig. 4.1a [58]. To achieve accurate 

simulation, the susceptibility of all materials in a voxel was calculated by taking a 

weighted average according to the fractional volumes. The field map was then calculated 

by convolving the susceptibility map with the dipole kernel. Subsequently, the images 

were simulated based on their spin densities. The echo time shift,  was set to be 0 

and 0.3ms, respectively, for the two acquisitions. In the simulation, the seeds were 

placed either parallel or perpendicular to the B0 field, which corresponds to the closed 

and open bore MRI, respectively. Note that no prior knowledge about seeds orientation 

is required for the proposed method to work. Gaussian noises yielding different SNR 

were also added to both the real and imaginary part of the images. 

A sequence of images at several resolutions were calculated based on the highest 

resolution images simulated at a resolution of 50um in x and y directions, and 0.15mm in 

z direction. The FOV is 5.12 × 5.12 × 1.05 cm
3
, producing an image size is 1024 × 1024 

× 70. Three seeds were placed with a spacing of 5mm and 10mm in the first simulation. 

And one seed was placed at [2.25cm, 2.25cm] in the FOV in the second and third 

simulation. The lower resolution images (0.5 mm, 1mm, and 1.5mm in-plane resolution) 

were simulated by subsampling the high-resolution images.  

 

shiftT
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Fig. 4.1 (a) The structure of a dummy STM 1251 I-125 brachytherapy seed; (b) The 

dimension and susceptibility of the materials in the seed [6]. 

 

4.3.4 Experimental data acquisition 

To further test the proposed method, three sets of experimental data were 

acquired on a 33cm-core 4.7T Varian scanner. The first dataset was acquired using a 

gelatin phantom with which the brachytherapy seeds location is straightforwardly 

controlled. The phantom was built using the following procedure: (I) the gelatin solution 

was doped with copper sulfate to reduce the T1 and T2 relaxation time; (II) part of the 

solution was poured into a MR-compatible container and rested for concretion; (III) two 

STM 1251 I-125 dummy seeds were placed on top; (IV) then the rest of the gelatin was 

filled in and rested for concretion. The phantom was imaged using a birdcage coil, with 

the seeds being parallel to the magnetic field. A multi-slice spin-echo sequence was used 

to acquire the axial slice data, with echo shifts of = 0.3ms and = 0ms. The shiftT shiftT
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acquisition parameters are: matrix size = 128 × 128 × 7; FOV = 80 × 80 × 10.5mm
3
; 

slice thickness = 1mm, slice gap = 0.5mm; TR = 2s, and TE = 30ms. The field map was 

calculated voxel-by-voxel according to 

     (4.5)  

where  is the phase of the image voxel. 

In the second experiment, a needle was used to insert three brachytherapy seeds 

into pork meat (see Fig. 4.7(a)), which mimics human biological tissue. Additionally, a 

plastic stick was inserted to simulate a natural void, and a bamboo toothpick was 

inserted to simulate a capillary. The seeds in this experiment were placed perpendicular 

to the B0 field. Image slices were acquired in the sagittal plane, which was perpendicular 

to the longitudinal direction of the seed. The experimental data were acquired using the 

same parameters as those used in the first experiment.  

In the third experiment, 6 brachytherapy seeds with different spacing (5mm, 

11mm, and 15mm) were inserted into pork meat (see Fig. 4.8(a)) to study the limitation 

of the proposed method. The seeds orientation and imaging parameters were the same as 

the second experiment, except the slice thickness was set to 1.5mm with no gap. 

All k-space data were transferred to a computer with the Mac OS X operation 

system, 2.5 GHz Intel Core i5, 4GB 1600MHz DDR3 memory. Data processing was 

performed in Matlab 7.11.0 (R2010B, MathWorks, Natick, MA).  

After reconstructions, a measurement called half-intensity region is calculated for 

each simulation and experimental data set. The half-intensity region is defined as the 
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number of pixels that differ from the background tissue by at least 
max min

1
( )

2
I I , where 

and  are the maximum and minimum intensity of the pixels in the area. This 

measure shows the point-spread reduction between seeds in ordinary negative-contrast 

magnitude images and those in susceptibility-based positive contrast images.  

 

4.4 Results  

4.4.1 Computer simulations 

Fig. 4.2(a) shows the result from the first computer simulations. The top row 

corresponds to seeds placed perpendicular to the static magnetic field, and the bottom 

row corresponds to seeds placed parallel to the field. As shown in Fig. 4.2(a),(f), seeds 

appear as dark spots, each of which occupies an area of about 13 pixels, which is much 

larger than the physical size of a single seed (~0.8 mm in diameter, or 1 pixel). Fig. 

4.2(b),(g) depict the phase images, and Fig. 4.2(c),(h) show the calculated field maps. 

Using the proposed method, the seeds can be clearly identified and localized, since each 

one occupies only a single pixel in both Fig. 4.2(d) and Fig. 4.2(i). The Maximum 

Intensity Projection (MIP) renderings of the susceptibility map are shown in Fig. 

4.2(e),(j). The locations and the size of the seeds are clearly shown in the reconstruction. 

Note that although the orientation of the seeds differs, the proposed method was able to 

correctly visualize and locate the seeds in both cases. 

 

  
I
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I
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Fig. 4.2 The simulated images (representative slice) and the corresponding results 

using the proposed method from the slices perpendicular to the seeds: (top row) 

seeds perpendicular to B0, (bottom row) seeds parallel to B0; (a)(f) magnitude 

image, (b)(g) phase image, (c)(h) field map, (d)(i) susceptibility map calculated by 

the proposed method, and (e)(j) maximum intensity projection rendering of 

susceptibility maps. 

Fig. 4.3 shows the results where different levels of noise were added to the data. 

The proposed method performed as expected in all three cases. Even when there is 

significant noise on the mask covering many “false” areas (as in the cases of SNR = 4 

and 2), the proposed method still provided accurate location of the seeds. However, with 

very noisy data (such as when SNR = 2), the results from the proposed method started to 

deteriorate, and positive contrast was shown in an enlarged area. 
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Fig. 4.3 Reconstructions of a seed at different SNR in the simulated studies: (first 

row) SNR = 8, (second row) SNR = 4 and (third row) SNR = 2; (a) (f) (k) magnitude 

images, (b) (g) (l) phase images, (c) (h) (m) mask generated by thresholding the 

magnitude images, (d) (i) (n) positive contrast images from the proposed method, 

and (e) (j) (o) reference of the true seed location. 

 

The effect of the proposed method with respect to different resolutions was also 

studied, the results of which appear in Fig. 4.4. This study shows the proposed method 

can correctly localize the seeds using a range of resolutions, making it more practical for 

clinical applications.  
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Fig. 4.4 Reconstruction of a seed with images simulated at different resolutions: 

(first row) 1.5mm, (second row) 1mm, and (third row) 0.5mm; (a) (f) (k) magnitude 

images, (b) (g) (l) phase images, (c) (h) (m) masks, (d) (i) (n) positive contrast 

images created using the proposed method, and (e) (j) (o) reference of the true seed 

image location. 

 

4.4.2 Experiments with tissue phantoms 

Figs. 4.5-4.6 demonstrate experimental results with a gelatin phantom in which 

the seeds were placed parallel to the static magnetic field, resulting in a round pattern 

around the seeds on the axial images. Fig. 4.5(a) shows the magnitude image of the 

center slice. As expected, the seeds and their neighboring pixels are shown as dark spots, 

each occupying about 8 pixels. Fig. 4.5(b) is the phase image with = 0.3ms, and Fig. shiftT
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4.5(c) shows the calculated field map, which clearly depicts the effect of the strong 

susceptibility on the neighboring pixels. Finally, the positive-contrast susceptibility 

images of the seeds using the proposed method are shown in Fig. 4.5(d). The images of 

the seeds are much narrower and closer to their physical size than those depicted in Figs. 

4.5(a),(c). It is worth noting that the shadings that appear over the entire field of view of 

the images shown in Figs. 4.5-4.6 are likely due to B0 field inhomogeneity or from the 

induced field from the geometry of the phantom, as no shimming was performed during 

the data acquisition and no background phase removal was performed during data 

processing.  

The proposed method was compared to the SUMO method [4], and a 

representative result is shown in Fig. 4.6. As shown in Fig. 4.6(a), whereas the proposed 

method produced a positive contrast image of the seeds at their locations, SUMO 

generated highlighted “rings” surrounding the seeds, which are much larger than the 

physical profiles of the seeds themselves (see Fig. 4.6(b)). A one-dimensional cross-

section that intersects one seed appears in Fig. 4.6(c) and provides additional evidence to 

support this observation. The MIP reconstructions of the two results are shown in Fig. 

4.6(d),(e). Clearly, the 3D reconstruction using the proposed method provides a more 

accurate rendering of the seeds, and therefore more precise seed localization, than the 

MIP reconstruction generated using the SUMO technique. 
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Fig. 4.5 A representative axial slice reconstructed from a gelatin phantom with two 

dummy seeds: (a) magnitude image from the spin echo acquisition, (b) phase image 

from the acquisition with = 0.3ms, (c) calculated field map, (d) positive contrast 

image using the proposed method.  
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Fig. 4.6 The positive contrast images created by (a) the proposed method, and (b) 

the SUMO method; (c):  zoomed-in 1D cross-section near the left seed, indicated by 

the line segments in (a) and (b); (d) MIP reconstruction from the 3D reconstruction 

by the proposed method; (e) MIP reconstruction from images processed by the 

SUMO method. 

Images and comparisons on a representative slice of the 3D dataset in the second 

phantom experiment are shown in Figs. 4.7. Fig. 4.7(a) is a photo of the tissue phantom, 

and Fig. 4.7(b) is the magnitude image of the center slice. The lower green arrow 

indicates the position of the plastic stick, and the upper red arrow indicates the position 

of the bamboo toothpick. Interestingly, small regions around the three seeds show some 

signal enhancement due to the distortion at . However, up to 25 pixels (~10mm
2
)shiftT
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around each seed are shown as dark spots. Fig. 4.7(c),(d) show the phase images for 

= 0ms and 0.3 ms, respectively. When = 0ms, there are no significant phase 

variations due to ΔB around the brachytherapy seeds because of the 180° refocusing 

pulse, as expected. Phase at the exact seed locations is due primarily to noise.  At  = 

0.3 ms, significant phase variations can be clearly seen in Fig. 4.7(d), particularly around 

the seeds. In this experiment, the seeds were perpendicular to the static magnetic field, 

resulting in a spindle pattern around the seeds. One can see that from the magnitude and 

the phase images, it is hard to differentiate the seeds from the two voids induced by the 

plastic and bamboo sticks. 

Fig. 4.7(e) shows the field map calculated from the phase images. Although 

obvious differences between the seeds and other structures can be seen, the locations of 

the seeds are not precisely defined. However, Fig. 4.7(g) demonstrates substantial 

differences between the seeds and other structures using the proposed method, and, the 

seeds are visualized with improved definition and accuracy. The number of pixels per 

seed has been reduced from around 25 pixels in Fig. 4.7(b) to 3 pixels in Fig. 4.7(g), 

which is closer to the physical seed size. Note that the size of the seeds is also much 

smaller than the mask depicted in Fig. 4.7(f), which verifies that the proposed method 

does not critically depend on the accuracy of the mask to work. Fig. 4.7(h) shows the 

positive contrast image created using the SUMO method. Again, it is observed that the 

proposed method reconstructed the seed faithfully at the accurate location, while the 

more straightforward SUMO method highlighted the surrounding tissues.  
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Fig. 4.7 Upper row: Images from the first tissue phantom experiment: (a) photo of 

the phantom; (b) magnitude image; (c) phase image with = 0 ms; and (d) phase 

image with = 0.3ms. As shown, in addition to the three seeds, a bamboo 

toothpick (upper red arrow) is used to simulate capillary and a plastic stick (lower 

green arrow) is used to simulate natural cavities and voids. Lower row: 

Reconstructions using two different methods: (e) calculated field map; (f) mask  ; 

and (g) positive contrast image generated by the proposed method, and (h) by the 

SUMO method. Note that seeds are placed in the phantom such that they are 

perpendicular to the B0 field. 
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Fig. 4.8 Images from the second tissue phantom experiment: (a) photo of the 

phantom with the spacing between the seeds labeled; (b) magnitude image; and (c) 

positive contrast image generated by the proposed method. 

Images and comparisons on a representative slice of the 3D dataset in the third 

phantom experiment are shown in Figs. 4.8. Fig. 4.8(a) is a photo of the tissue phantom 

where the locations and the spacing between the seeds are labeled. Fig. 4.8(b) shows the 

magnitude image of the center slice. The susceptibility map calculated by the proposed 

method is shown in Fig. 4.8(c). The results demonstrate the proposed method can 

correctly locate the seeds as close as 5mm, which is the smallest spacing in most clinical 

settings. 

Table 4-1 lists the half-intensity regions from the magnitude images and the 

images reconstructed using the proposed method. The percentage reductions of the half-

intensity regions in different experiments are also listed on the right column. As shown, 

in most cases, the proposed method reduced the point spreading by more than 70%. The 
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half-intensity regions in the positive contrast images are much closer to the real size of 

the seeds. This gain significantly improves the visualization of seeds. 

Table 4-1 The half-intensity regions and reduction rates in the computer simulations 

and phantom experiments. Data from representative slices shown in Figs. 4.2~4.8 

Magnitude 

images 

Positive contrast 

Images 

Reduction rate 

Simulation 1 Perpendicular 21 1 95% 

Parallel 13 1 92% 

Simulation 2 SNR=8 21 1 95% 

SNR=4 21 1 95% 

SNR=2 22~24 7 68%~71% 

Simulation 3 Res=1.5mm 9 1 89% 

Res=1mm 21 1 95% 

Res=0.5mm 33 1 97% 

Gelatin phantom with 2 seeds 5~8 1~2 75%~80% 

Meat phantom with 3 seeds 19~25 2~4 84%~89% 

Meat phantom with 6 seeds 13~21 1~4 69%~95% 



 

 65 

4.5 Discussions 

The susceptibility of interventional devices is known to cause dark spots in MR 

images. The previously presented results have demonstrated that the proposed method 

can inversely compute the susceptibility distribution. Thus the proposed method 

addresses this problem by producing images with devices shown in positive contrast, 

since they exhibit higher magnetic susceptibility than typical biological tissues. In this 

research, the effectiveness of this method has been established using phantom 

experiments with dummy brachytherapy seeds. Future work will extend the application 

of the proposed method to imaging larger devices, such as stents and biopsy needles. 

The SUMO method demonstrates its ability to provide positive contrast images 

in tissues surrounding the brachytherapy seeds in literature. But it does not show good 

contrast using the spin-echo sequence in this work. One potential reason is the shifted 

echo time that we used was too small. The TE used in [4] for brachytherapy seeds is 

4.6ms, whereas the effective TE used in this research is only 0.6 ms.  

The susceptibility images obtained from the proposed method can be 

straightforwardly combined with the conventional images, so both soft tissues and the 

seeds can be visualized concurrently [9]. By doing so, both good soft-tissue contrast and 

accurate brachytherapy seed localization can be achieved simultaneously. 

In order for the susceptibility mapping to work, the proposed method must use 

images acquired by multiple slices with sufficient resolution, while other existing 

methods such as SUMO can be applied to a single slice. It should be noted, however, 
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that practical MRI visualization and localization of brachytherapy seeds requires 

multiple-slice 3D images due to the small size of the seeds. 

Due to the large susceptibility, the field gradient close to a seed could potentially 

affect the slice selection profile. However, the maximal susceptibility-induced field 

distortion drops to 5ppm at about 1.5 mm from the center of the seeds. As the signals 

within the immediate vicinity of the seeds has very low magnitude due to dephasing, 

they will not likely to introduce large distortion to slice profile. Moreover, a 3D spin 

echo sequence can be used to alleviate the non-uniform excitation. However, it requires 

long acquisition time, which may reduce its utility in clinical applications. 

The simulation and experimental results show that the proposed method can 

differentiate the seeds with a reasonable distance. Additional experimental data, though 

not presented in the chapter, show that the proposed method can differentiate the seeds 

with a distance greater than 3mm. Since the typical spacing of the brachytherapy seeds is 

about 1cm, the proposed method is capable of differentiating the adjacent seeds in 

clinical applications [59]. 

The proposed method is limited in several aspects. First, due to the small size of 

the brachytherapy seeds and partial volume effect, the calculated susceptibility is in 

general lower than the theoretical prediction. This is due in part to the fact that the 

structure of the seeds is very complex, with multiple layers of different material inside. 

However, in most cases, only the average susceptibility of all materials in the voxel 

(titanium, aluminum, air and biological tissues) will be reflected. It is interesting to point 

out that lower quantified susceptibility values have been reported in [60] for a simple 
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sphere structure. Furthermore, computed susceptibility also depends on the size of the 

voxel. There is a critical resolution below which there will be insufficient spatial 

sampling of the field, and the proposed method may fail. The proposed method also 

requires longer reconstruction time than conventional MRI or the other more 

straightforward methods like SUMO. In the experiments presented in this chapter, it 

took between 3 to 10 seconds to reconstruct one 3D image using Matlab. Last but not 

least, the proposed method relies on signals with sufficient SNR from the surrounding 

areas of the seeds to calculate the image phase and susceptibility (even though the SNR 

can be extremely low at the immediate vicinity of the seeds). This is why the observed 

seeds diameters in Table 1 are larger than the expected values. Nevertheless, the 

objective of this study is to provide improved visualization and identification of the 

brachytherapy seeds, and the results presented herein demonstrate that the proposed 

method is very promising for this application. 

 

4.6 Conclusions 

In this chapter, a new method based on susceptibility mapping to provide positive 

contrast MRI visualization of brachytherapy seeds was presented. Both simulated and 

experimental phantom data were used to test the proposed method with different image 

resolutions and seed orientations. The results show that the proposed method can provide 

positive contrast for the seeds and correctly differentiate the seeds from other structures 

that appear similar to the seeds on conventional magnitude images. 
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CHAPTER V  

LOCALIZATION OF LARGE-SIZE INTERVENTIONAL DEVICES AND SPEEDUP 

 

In this chapter, we extend the method in Chapter IV to other larger interventional 

devices. Furthermore, we combined the method with compressive sensing because the 

acquisition time using spin-echo sequence with a shifted 180˚ pulse is long. An 

improved reconstruction method using compressive sensing with composite sparsifying 

transforms is also presented. 

 

5.1 Localization of Other Interventional Devices with Larger Size 

5.1.1 Introduction of larger interventional devices 

Certain interventional procedures, such as brachytherapy, biopsy and 

angioplasty, can be monitored using MRI if the devices used are MRI compatible. 

However, the objects, such as needles, markers, stents, and brachytherapy seeds, still 

have one-order higher magnetic susceptibility than human tissue. The high-susceptibility 

objects will affect their surrounding area and introduce fast dephasing thus decrease the 

signal-to-noise ratio (SNR). A dark hole and bright dots due to signal shifting appear and 

cover an area of several times larger than the devices itself in the MR images [2, 39]. 

This artifact hinders the accuracy of the localization of the devices, and prevents MRI 

from being widely used in these procedures. 

There are several methods that address this problem. The susceptibility gradient 

mapping using the original resolution (SUMO) method is a post processing method that 
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calculates the gradient of the susceptibility using a truncation filter in the k-space. At the 

boundary of the susceptible objects, the gradient is large. Therefore, SUMO method 

provides positive contrast image of the contour of the susceptible objects. A shortcoming 

of the SUMO method is that it depends on the phase variation, which will be a little 

larger than the actually size of the susceptible objects. 

To accurately locate the brachytherapy seeds, our group has previously proposed 

a method based on susceptibility mapping to provide the positive contrast seed images 

[61]. In the method, susceptibility is calculated by deconvoluting the magnetic field map 

with a dipole kernel. In this application, the devices are small (on the order of voxel size). 

However, with biopsy or angioplasty, the biopsy needles or stents have a much larger 

physical size and more severe signal loss. Susceptibility mapping of these devices has 

not been demonstrated due to the signal void or low SNR at or near the device locations. 

Common methods to localize and provide positive-contrast of these devices 

includes shifting the surrounding data to the location of the devices [8], mapping the 

susceptibility gradient by selectively turn the negative contrast into a positive contrast 

using a filter or short-term Fourier transform [3, 4]. However, these methods depend on 

pre-knowledge of the susceptibility of the devices and provide limited resolution. 

Our previous method, creating positive contrast images using susceptibility 

mapping, requires spin-echo sequence with shifted 180 pulse. However, this pulse 

sequence is time-consuming, especially we need multiple (at least 2) acquisition with 

different shifting time. Compressive sensing is a rapid developing method to reduce 

acquisition time. Though it is usually used to reconstruct the magnitude image with a 
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small amount of k-space data, we found out the reconstructed phase image is acceptable 

for our purposes, because generating positive contrast images and identifying the 

location of interventional devices doesn’t require high quantitative accuracy. 

In this paper, we extend our previous method, creating positive contrast images 

for brachytherapy seeds, to other highly susceptible objects. We first utilize the full k-

space data to test whether our previous method is capable for larger devices. We then 

applied the compressive sensing reconstruction with composite sparsifying transform to 

our method to reduce acquisition time. To test the proposed method, a gelatin phantom 

with a piece of platinum wire (susceptibility ~279ppm) and a water phantom with a 

titanium (susceptibility ~182ppm) biomarker needle are imaged. The corresponding 

positive contrast images are generated using 1) full k-space data, and 2) reduced k-space 

data [6]. Results show that the proposed method can provide much improved 

visualization of devices in positive contrast and help to achieve better devices 

localization.  

5.1.2 Data simulations and experimental acquisitions with full-kspace data 

Two highly susceptible objects were imaged using a 4.7T Varian 33cm scanner. 

In the first experiment, a platinum wire was placed in a gelatin phantom. A spin-echo 

sequence with a shifted 180° RF pulse was applied. The matrix size was 128×128×9. 

The FOV was 70×70mm
2
. The slice thickness was 1.5mm without slice gap. The TR 

was 2s, and the TE was 30ms. Six sets of images were acquired, with 180° RF pulse 

being shifted by shiftT =[0, 0.1, 0.2, 0.3, 0.4, 0.5]ms respectively. Phase unwrapping was 

applied on the phase images. Two selected sets of data were used to calculate the field 
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map, according to , where  is the phase change after phase unwrapping, 

and   is the gyromagnetic ratio.  

A computer simulation was conducted to mimic the experimental setup and 

explore the accuracy of the susceptibility calculation. A high resolution images with 

61um x 61um x 0.17mm resolution and 1152x1152x81 image size were created. 

Independent Gaussian noise was added to the real part and imaginary part of the data 

separately. Then the data was summated and averaged to 128x128x9 to simulate the 

spin-spin interaction. The other parameters were chosen so that they were consistent 

with the experimental data. The shape of the titanium wire was simplified as a circle.  

In the second experiment, a biomarker needle was inserted in to a water phantom, 

which was doped with 1g/L copper sulfate. The acquisition parameters were the same as 

the first experiment. 

5.1.3 Reconstruction using CS with composite sparsifying transform to reduce 

acquisition time 

The platinum wire dataset is used for this test. We simulated a radial acquisition 

with a reduced number of k-space lines using the fully sampled dataset. Totally 40 radial 

lines each with 128 data points (28% of full k-space data) were extracted to reconstruct 

the image. Daubechies filter with length 4 and level 1 is used in the proposed method. 

Both the deconvolution reconstruction and compressive sensing reconstruction 

procedures were performed offline using Matlab (Math Works, Natick, MA) and a 

house-made nonlinear conjugate gradient method. The computer has 2.5GHz Intel Core 
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i5, 4GB 1600 MHz DDR3 memory and OS X system. Multiple regularization 

parameters were tested and visually compared to choose the best results. 

5.1.4 Reconstruction using full k-space data 

Fig. 5.1 shows the results from the first phantom experiment. Fig. 5.1 (a) shows 

the gelatin phantom with the platinum wires (more gelatins were later filled on top of the 

platinum wire). Fig. 5.1 (b) shows a representative magnitude image in the center slice 

using the spin-echo sequence with a shifted 180º pulse. Because of the high 

susceptibility of the platinum, the magnitude image shows dark area up to 2.2mm in ring 

width, comparing with the diameter of the wire of 0.3mm. Fig. 5.1(c) and (d) shows the 

corresponding phase images when  = 0ms and 0.2ms. When  = 0ms, the phase 

should be uniform across the phantom. However, the field variation induced by the high 

susceptibility will affect the excitation pattern. To calculate the field map, different 

shiftT  are tested. 
shiftT  = 0.1ms can provide correct field map, as shown in Fig. 5.1(e). 

And Fig. 5.1(f) shows the susceptibility map calculated using the proposed method. 

Comparing to Fig. 5.1(b), the platinum wire shows in positive contrast in Fig. 5.1(f), 

making it much easier to see and localize. 

 

shiftT shiftT
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Fig. 5.1 (a) Photo of the platinum wires in a gelatin phantom; (b) MR magnitude 

image; (c) phase image with  = 0ms, (d) phase image with  = 0.2ms; (e) 

calculated field map; and (f) susceptibility image from the proposed method. The 

edges of the images are cropped for better visualization. 

 

shiftT shiftT
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Fig. 5.2 The results from the computer simulation. (a) Magnitude image; (b) Phase 

image when = 0.2ms; (c) the ideal field map without noise, with +/-10ppm 

contour labeled; and (d) the susceptibility map calculated using the proposed 

method. 

 

Fig. 5.2 shows the results of the computer simulation. Fig. 5.2(a) and (b) show 

the magnitude and phase image ( shiftT  = 0.2ms) of the center slice in the simulation. They 

correspond well to Fig. 5.1(b) and (d). Fig. 5.2(c) shows the field map and the +/-10ppm 

contour of the field map. Fig. 5.2(d) shows the susceptibility map calculated using the 

proposed method. The proposed method produced a highly localized, clear 

representation of the position of the susceptible objects. 

shiftT
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Fig. 5.3 (a) Photo of the biomarker needle in water phantom; (b) magnitude image; 

(c) phase image with T
shift  

= 0.1ms; (d) field map calculated from the phase images; 

and (e) susceptibility map from the proposed method. The edges of the images are 

cropped for better visualization. 

 

The results from the second phantom experiment are shown in Fig. 5.3. Fig. 

5.3(a) shows a picture of the water phantom for the second experiment. The needle is 

made of titanium and the size of the needle is 14G (~2mm in diameter). The water is 

doped with copper sulfate to make the T1 and T2 of the water close to the human 

muscles. Fig. 5.3(b) and (c) shows the magnitude and phase ( shiftT  = 0.1ms) of the spin-



 

 76 

echo sequence with a shifted 180º pulse, respectively. The presence of the needle 

introduces great distortion to both the magnitude and phase image. Fig. 5.3(d) shows the 

field map calculated from the phase images. And Fig. 5.3(e) shows the susceptibility 

map calculated using the proposed method. As shown, the susceptibility map calculated 

using the proposed method reduces the image artifacts and shows the location in positive 

contrast. 

 

5.2 Image Reconstruction Improvement Using Compressive Sensing with 

Composite Sparsifying Transforms 

5.2.1 Introduction of compressive sensing 

Compressive sensing (CS) technique can recover a “sparse” image from a 

substantially reduced number of measurements less than what is dictated by the 

sampling theorem. In MRI, CS has proven to be an effective approach to reduce the data 

acquisition time, therefore allows faster imaging [57]. One important condition for the 

CS technique to work is that the images must have sparse representations in some basis. 

For images that are sufficiently sparse, restricted isometry property (RIP) condition 

guarantees the exact reconstruction when there is no noise; or a reconstruction with 

limited error when the measurements contain noise [62, 63]. 

Many efforts have been paid to find optimal sparsifying transforms (or sparse 

representations) to improve CS-MRI. A number of recent works in this area are based on 

dictionary learning where a dictionary is learned from a training set or iteratively from 

the measurements. This is a promising technique for CS-MRI that is out of the scope of 
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this paper. Interested readers are referred to [64, 65]. In this paper, we focus on the 

sparsity measures or sparse representations that are based on conventional, non-adaptive 

transforms. These include, but not limited to, first-order finite difference (for Total 

Variations), wavelet [57, 62], contourlet [66], curvelet [67], discrete cosine transform 

(DCT) [31], and Laplacian [68]. Each specific representation may be particularly 

suitable for compressing certain kinds of features, but may have limited sparsifying 

capability for other features. For example, the finite-difference works well for piece-wise 

constant features, but may introduce staircase artifact for rapid changing features [69]. 

Wavelet transform is good for point-like features, but it could introduce some noise-like 

artifact in the background where no signal is expected. For a comprehensive 

understanding of diverse transforms, readers are referred to [70]. An important 

realization since the early literature on CS-MRI is that multiple sparse representation 

terms can be combined to improve the reconstruction quality [49, 57, 71, 72]. In the 

literature, the combination is generally performed by a linear summation of the 

predefined sparse representations. For example, TV and wavelet filters are used and 

balanced by two regularization parameters in [57]. Plonka proposes curvelet and wavelet 

transforms (though not specifically for MR images) [73]. Another group tested different 

transforms and showed that the linear summations can provide improved results [71, 74]. 

However, using multiple sparsifying transform terms in this way means that each term 

must be weighted by a regularization parameter. To determine the two (or more) 

regularization parameters, multiple reconstructions with different choice of parameters 

need to be performed so the “optimal” set of parameters can be identified. Practically the 
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L-curve method can be extended to multiple dimensional cases to choose the parameters, 

but the procedure could be extremely time-consuming [75].  

In this paper, a new method is proposed to combine sparsifying transforms for 

CS-MRI. In this method, two or more sparsifying transforms are cascaded to form a 

composite transform, i.e. they are applied to an image sequentially. As such, the method 

can take advantage of both transforms, but only needs to tune a single regularization 

parameter. This treatment is expected to increase transform sparsity, and in the same 

time maintain reconstruction quality. Experimental results from both simulated and in-

vivo MRI data show that the proposed method yields similar image reconstruction 

quality, but takes significantly less time than the conventional methods where multiple 

sparse representations are combined linearly. This paper is developed based on a 

preliminary report in [61]. 

5.2.2 Compressive sensing MRI with combined sparsifying transforms 

In MRI, the measurements acquired in the spatial-frequency domain (also known 

as k-space) are related to the underlying image x  by b Ax , where b  is the stacked 

column vector representing the acquired k-space data, A  is the reduced-rank Discrete 

Fourier Transform (DFT) matrix, and x  is the stacked column vector representing the 

image to be reconstructed. In the conventional MRI, the k-space data are sampled 

according to the Nyquist rate such that A  is full-rank. Image reconstruction is simple by 

multiplying b  with the inverse of A , which accounts to the inverse DFT. In CS-MRI, 

only a subset of k-space data is acquired at “randomized” k-space locations. The image 

reconstruction can be achieved by solving the following convex optimization problem 
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1
arg min

subject to  

x
x

Ax b




     (5.1) 

where   is a sparsifying transform and x  is the transform coefficients. CS theory 

requires that the inverse transform of   to be sufficiently incoherent with A , i.e., the 

rows of A  should not have a sparse representation in terms of the columns of  , and 

vice versa [76]. Since A  is a reduced-rank DFT matrix that corresponds to the 

“randomized” k-space locations, a variety of transforms can loosely satisfy this 

condition in practice. 

The problem in Eq. 5.1 is usually addressed by turning it into the unconstrained 

form 

2

1 2
arg min ( )

x
g x x Ax b        (5.2) 

where   is the regularization parameter to balance the first term (sparsity) and the 

second term (data consistency). 

In several papers, it is shown that the combination of two sparsity terms provides 

improved reconstruction result than a single transform [57, 71]. In doing so, image 

reconstruction is achieved by solving 

2

1 1 2 21 1 2
arg min ( )

x
f x x x Ax b          (5.3) 

where 1  and 2  are two regularization parameters and 1 2 and    are two different 

sparsifying transforms. Optimal selection of the regularization parameters is not 

discussed in the above literatures, but it is generally agreed that it is an important factor 

for image reconstruction quality. However, optimizing these parameters is not trivial. In 
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most cases, multiple trials with different values are performed and the “optimal” one is 

selected after assessing the corresponding reconstructions.  

In this paper, we propose to use a combined sparsifying transform in the 

following formulation  

2

21

ˆarg min ( )
x

g x x Ax b        (5.4) 

where ̂  is a composite transform such that
1

ˆ
m

i

i

   , where 1,..., m   are individual 

sparsifying transforms, and  indicates the sparsifying transforms will be applied 

sequentially. To make an effective composite transform, a variety of individual 

transforms can be chosen according to the general characters of the images to be 

reconstructed. Due to the computation associated with composite transform, normally 

we limit m  to two or three.  

Eq. 5.4 can be solved using a nonlinear conjugate gradient method. As shown in 

[57] 

 
1

ˆ2 ( )Hg x A Ax b x          (5.5) 

where 
H

 denotes the Hermitian conjugate. Since 
1

ˆ x  is not differentiable at 0, a small 

number is added to make it differentiable. As a result, Eq. 5.5 can be approximated by 

  1ˆ ˆ2 ( )H Hg x A Ax b W x          (5.6) 

where 
1

ˆ H H

i

i m

   , and W  is a diagonal matrix with the diagonal elements 

*ˆ ˆ( ) ( )k k kx x v      where v  is a very small positive number to avoid singularity. In 
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this paper, v  is set to 10
-15

. The matrix W  is positive definite, therefore the conjugate 

gradient is guaranteed to converge within a finite number of iterations. Note that in the 

proposed formulation, only one regularization parameter,  , needs to be tuned. This 

makes it more efficient to solve (5.4) than to solve (5.3) where two parameters need to 

be tuned. 

One key component in the proposed method is the composite sparsifying 

transform. Many sparsifying transforms have been used for CS-MRI, such as curvelet, 

wavelet and finite-differences. The sparsifying transforms should be selected according 

to the feature of the image. Finite difference is capable of constant-like feature, wavelet 

is capable of point-like feature, and curvelet is capable of line-like feature [77-79]. 

Another criterion to choose the sparsifying transform is that it should be incoherent with 

sampling matrix A .  

5.2.3 Data preparation and performance evaluation 

Three sets of k-space data are used to test the methods. For each dataset, we 

simulated a radial acquisition with a reduced number of k-space lines using the fully 

sampled dataset. Reconstructions using the proposed method are compared with the 

conventional methods (wavelet, TV, or the linear summation of the two terms) on both 

image quality and reconstruction time. In these test, the composite transform consists of 

cascaded combined finite-differences (TV) and wavelets. 

The first dataset was acquired during a breast exam on a 1.5 T clinical scanner. 

The data was acquired with a 3D fast gradient echo sequence. The k-space data from one 

slice was used to test the algorithms. Acquisition data matrix is 128 by 128 from which 
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totally 40 radial lines each with 128 data points (28% of full k-space data) were 

extracted to reconstruct the image. Daubechies filter with length 4 and level 1 is used in 

conventional CS method with wavelet transform and the proposed method. 

The second is a brain image dataset that was acquired from a healthy volunteer 

using a fast spin-echo (FSE) sequence on a 1.5T clinical scanner. The data matrix size 

256 by 256. The method to extract undersampled radial k-space lines is the same as the 

first data set. Totally 70 radial lines (25% of full k-space data) were used to reconstruct 

the image. The filter for conventional CS with wavelet transform and the proposed 

method is the same as the first data set. 

The third data set is an abdomen image. The dataset was acquired using a 3 Tesla 

clinical scanner with Dual Echo T1-weighted sequence. The matrix size is 512 by 512. 

Slice thickness is 6mm, repetition time is 230ms, and echo time is 5.8ms. 138 radial 

lines (25%) are sampled. 

To assess the reconstruction quality, three complex images reconstructed from 

the fully sampled k-space data are used as reference (shown in Fig. 5.4 (a-c). 

Specifically, the normalized mean square errors (NMSE) of a reconstructed image is 

defined as 

2

2

2

2

r o

o

I I

I


, where rI  is the reconstructed image and oI  is the reference image. 
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Fig. 5.4 The reference images reconstructed from the fully sampled k-space data. 

(a) breast MRI, (b) brain image, and (c) abdominal image. Details inside the regions 

highlighted in rectangular boxes are shown in Figs. 5.7 and 5.8.  

 

To find the optimal reconstruction using four methods, multiple regularization 

parameters are tested and the best results for each method are selected by visually 

comparison. The L-curves are also generated, which serve as a guide to choose the best 

reconstruction. A typical L-curve for single regularization term and linear summation is 

shown in Fig. 5.5. Specifically, the computational time to find the optimal solution with 

different   and NMSE of the reconstructed image are calculated. The computational 

time is the total time to reconstruct the images using eight regularization parameters, i.e. 

  = [1, 0.1, 0.02, 0.01, 0.001, 0.0001, 0.00001, 0.000001]. For the linear summation 

problem, both regularization parameters are chosen from this set. Therefore, it requires 

64 reconstructions, comparing to 8 for the other three methods. 
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Fig. 5.5 A typical L-curve for (a) single regularization term and (b) linear 

summation of two regularization terms. 

 

To avoid the bias introduced by visualization, one can also use the SNR as a 

guidance to select the best reconstruction. Other quantitative parameters, such as signal-

to-error ratio, or NMSE requires the reference images, which may not be available in the 

real compressive sensing acquisition and reconstruction. 

This CS reconstruction procedure was performed offline using MATLAB (Math 

Works, Natick, MA). The wavelet transform is calculated using Wavelab [80]. The 

nonlinear conjugate gradient method is developed in house based on SparseMRI [57]. 

The processor of the computer is Intel® Core™ 2 Duo CPU T8300 @2.40GHz, the 

RAM is 2GB, and the system is Windows 7 Ultimate. 

5.2.4 Results 

Fig. 5.6 illustrates the transformed brain image with different sparsifying 

transform. The wavelet transform used in (a) and (c) is Daubechies with length 4 and 
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level 1. As shown in Fig. 5.6 (d), the composite (TV and wavelet) transform results in 

less number of significant pixels. This means that the proposed method provides highest 

transform sparsity, therefore an improved reconstruction can be expected. 

 

 

Fig. 5.6 Sparsifying transforms applied to the brain image: (a) wavelet transform, 

(b) finite-differences, (c) composite (wavelet and finite-difference) transform of 

second data set (real and imaginary), and (d) pixel distribution of the three 

transforms, which shows that the proposed composite transform yields improved 

sparsity. 
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Fig. 5.7 CS reconstructions of the highlighted regions in Fig. 5.4 of: (a) breast 

image; (b) brain image; and (c) abdominal image. Different columns show (from 

left to right): reference images, reconstructions using TV, Wavelet, linear 

summation of TV and Wavelet, and the proposed method (last column). On each 

reconstruction, λ1 is the weight for TV term, λ2 is the weight for wavelet, and λ is 

the weight for the proposed method. 

 

Fig. 5.7 shows the CS reconstructions from the three datasets using TV (finite 

difference), wavelet, linear summation of the two, and the proposed composite transform 

as sparsifying transforms. Regions highlighted in Fig. 5.4 are zoomed in so that the 

details can be better visualized. As can be observed, images reconstructed using TV has 

staircase artifact (second column); Wavelet-based reconstructions contain noticeable 

noise in the background, and left some point-like artifact in the anatomical parts (third 
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column). Linear summation (forth column) and the proposed method (fifth column) 

perform similar where the background noise is eliminated and no point-like or staircase 

artifacts shown. The difference between the reconstruction and the reference image is 

shown in Fig. 5.8, correspondingly. In general, the last two columns show less structured 

artifacts, which indicates improved reconstructions.  

 

 

Fig. 5.8 The error images between the reconstructed images and the reference 

images. The rows and columns correspond to those in Fig. 5.7. 

 

Table 5-1 shows the quantitative NMSE of the four reconstruction methods. For 

wavelet, the best results (Daubechies 4 level 1) from trials with multiple filters and 

different filter length are tested, and the optimal one is used. From the NMSEs shown in 
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the table, the proposed method performs the best for the first and third data set, and the 

linear summation method performs the best for the second data set. Note that for the 

second data set, though the NMSE for linear summation is smaller than that of the 

proposed method, there is no visible difference between the two reconstructions.  

 

Table 5-1 Normalized mean square errors for finite-differences, wavelet, linear 

summation and the proposed method 

 TV(Finite-

difference) 

Wavelet Linear 

summation 

Proposed 

method 

Breast 1.3e-6 3.9e-7 2.5e-7 3.8e-8 

Brain 1.2e-4 2.8e-4 8.1e-5 1.4e-4 

Abdomen 1.1e-6 8.3e-7 5.2e-7 2.2e-7 

 

 

Table 5-2 shows the total reconstruction time using different methods. For finite-

differences, wavelet and proposed method, each entry shows the total time spent on the 8 

trial reconstructions. For linear summation, it is the total time of 64 reconstructions. It 

can be seen the proposed method requires much less time than linear summation time, 

and is on the same order as the wavelet-based reconstruction method. 
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Table 5-2 Averaged single and total computational time (s) for finite-differences, 

wavelet, linear summation and the proposed method 

 TV (Finite-

difference) 

Wavelet Linear 

summation 

Proposed 

method 

Breast 2.8 (22) 29.9 (239) 50.3 (3221) 21.5 (172) 

Brain 37.3 (298)  122.9 (983)  167.5 (17021) 96.6 (773)  

Abdomen 60.9 (487)  227.0 (2043) 546.4 (34967)  178.9 (1431)  

 

 

5.2.5 Combined the compressive sensing and interventional devices localization 

Fig. 5.9 shows the magnitude and phase images of the center slice with  = -

0.3ms. Fig. 5.9 (a) and (c) shows the magnitude and phase image reconstructed using the 

full k-space data. Fig. 5.9 (b) and (d) shows the magnitude and phase image 

reconstructed using compressive sensing with 28% k-space data. From this comparison, 

it shows the compressive sensing can reconstruct the phase image with acceptable 

difference which can be potentially applied to the susceptibility mapping. 

 

shiftT
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Fig. 5.9 Magnitude (first row) and phase (second row) images of center slices with 

Tshift = -0.3ms, reconstructed with (first column) full k-space data, and (second 

column) 20 radial lines, which corresponding to 28% of total k-space data. 
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Fig. 5.10 Field maps (first row) and susceptibility maps (second row) of center slices 

with Tshift = -0.3ms, reconstructed with (first column) full k-space data, and 

(second column) 20 radial lines, which corresponding to 28% of total k-space data. 

 

Fig. 5.10 shows the field maps and susceptibility images of the center slice with 

 = -0.3ms. Fig. 5.10 (a) and (c) shows the field map and susceptibility image 

reconstructed using the full k-space data. Fig. 5.10(b) and (d) shows the field map and 

susceptibility image reconstructed using compressive sensing with 28% k-space data. 

shiftT
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The susceptibility map reconstructed from compressive sensing shows some degradation 

of image quality, but it still can identify the location of the platinum wire. 

 

5.3 Discussions 

Different wavelet filters and filter length lead to different reconstruction quality. 

Some of the wavelet filters may perform better than the others for a specific image. The 

reason is that if the images are fairly smooth, then short filters are not optimal. But 

longer wavelet filter will induce more correlation between adjacent coefficients, and 

limit the lowest frequency that can be resolved. In addition, different type of filters may 

have different energy leakage and ringing artifacts, which will lead to different 

reconstruction results in compressive sensing. Therefore, the performance of the wavelet 

method depends on the data and the choice of the filter. In our tests, a number of 

wavelets and filter lengths were tested and the optimal one were chosen based on the 

sparsifying power. 

The conventional CS-MRI method with linear summations of different terms can 

provide the good reconstruction in terms of NMSE. However, it can be time-consuming 

to find the multiple, optimal regularization parameters for the two transforms. For the 

proposed method, it can provide comparable or better reconstructions in much less time. 

In addition, the proposed method is sparser in transform domain, therefore it converges 

faster. 

The proposed method applies finite differences after the wavelet transform. An 

alternative way is to apply wavelet transform after finite differences. A further study 
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shows that the sequence of the sparsifying transforms does affect the results. However, 

the quality of the reconstructed image is not affected significantly. In terms of image 

quality, there seems to be no preference between the two. In terms of calculation time, 

applying finite differences first is faster than applying wavelet first. It is because for the 

later one, the wavelet has to be performed on two finite difference images, the horizontal 

and vertical images. 

There are many possible combinations of the transforms to form the composite 

transform in the proposed method. In this paper, only the combination of finite-

difference and wavelet transform is implemented and compared. Different combinations 

can provide a variety of new capability in handling different features. The proposed 

method can provide a large number of derivative sparsifying transforms that can be 

topics of research in specific applications. 

Combined sparsifying transform inherits the advantages of each individual 

transform. Furthermore, the combinations can have its unique benefits. For example, 

Laplacian operator has been introduced as a new sparsifying transform [68]. Laplacian 

operator can be seen as a combination of two finite-differences. Even though finite-

differences work well for piece-wise constant images, Laplacian can provide sparser 

representation for linear-changing images or even more rapid changing images. This 

means the proposed method is not only an alternative to linear summation method, but 

also a new avenue to build novel algorithms. 

The long reconstruction time for conventional compressive sensing with wavelet 

transform and the proposed method is due to the slow wavelet transform. With other 
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transforms or even a wavelet transform with different filter type, the computational time 

can be much faster. 

The simulated and experimental results have clearly shown that the high 

susceptibility will introduce severe image distortion to the images. Therefore, for some 

procedures that require accurate location of the susceptible objects, such as 

brachytherapy, marker insertion and biopsy, the visual assistance provided by 

conventional MRI is limited. The proposed method can be used to reduce the location 

error in these procedures with MRI imaging. 

The 180º pulse can recover the phase induced by the field inhomogeneity after 

the spins are tipped down to x-y plane. However, the strong field variation induced by 

the high susceptible devices is in the same order of that induced by the selection 

gradients. Therefore, there still is a little phase variation across the phantom for 

, as shown in the result. To overcome this, a 3D spin-echo sequence should be 

applied. However, the 3D spin-echo sequence takes much longer time and thus not 

practical for clinical applications. 

To correctly calculate the field map, the phase difference between the two 

consecutive  cannot exceed 2. Otherwise the phase unwrapping cannot correctly 

recover the phase change. This imposes a requirement on the 
shiftT

 
selection. The rapid 

phase wrap due to the high susceptibility will introduce error. Though no accurate phase 

of the pixel on and at the immediate vicinity of the highly susceptible objects is required 

T
shift

= 0ms

shiftT
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for the calculation of the location. The study of 
 
selection will be one of our future 

researches. 

Compressive sensing can be applied during the acquisition and reconstruction to 

reduce the acquisition time. Compressive sensing is not commonly used to reconstruct 

phase image. Compressive sensing utilizes k-space data and reconstruct complex image. 

Thus the phase image is available for free. The accuracy of the reconstructed phase 

image needs to be evaluated. However, it is good enough for our purpose which is to 

provide positive contrast and identify the location of interventional devices. Applying 

compressive sensing can significantly reduce the acquisition time. The disadvantage is 

that it increases reconstruction time. For the testing dataset whose dimension is 

128x128x9x3, calculation time for each phase image using the method introduced in 

Chapter VI is about 30s (though it is much faster than linear summated method), 

resulting in 13.5min total time. Many methods can speed up the reconstruction time, 

such as using GPU or a faster algorithm, which is out of the scope of this paper.  

 

5.4 Conclusions 

In this chapter, we proposed a new compressive sensing MRI method that uses 

composite sparsifying transforms. Specifically, two or more sparsifying transforms are 

applied sequentially in the CS formulation. The method is tested using simulated 

reduced acquisition with three in-vivo data sets. The results show that the proposed 

method provides improved reconstruction quality than the conventional CS with a single 

transform, and similar or better quality as the conventional CS with linear summation of 

shiftT
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multiple transforms. A unique benefit of the proposed method is that only one 

regularization parameter needs to be tuned. In practice, the proposed method can obtain 

optimal reconstruction significantly faster than the conventional CS-MRI with multiple 

transforms which requires tuning multiple parameters. 
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CHAPTER VI  

CONCLUSIONS 

 

In this thesis, we presented a new method to image highly susceptible 

interventional devices by mapping their susceptibility using a regularized L1 

minimization.  

The novelty of this thesis includes: 

1. Phase unwrapping using Region-based Markov Random Field 

2. Localization and visualization of interventional devices, such as 

brachytherapy seeds, platinum wire, and biopsy needle 

3. Compressive sensing with composite sparsifying transform 

The feasibility of the proposed method was demonstrated using phantom 

experiments and simulations. Preliminary results of MRI images with brachytherapy 

seeds, platinum wire and biopsy needle show that the proposed method can successfully 

localize and visualize interventional devices. To our best knowledge, this is the first time 

such mappings are done on interventional devices. Recommended shift values in a spin-

echo sequence were identified. The potential of the method for providing positive-

contrast device images instead of the conventional “black” or negative-contrast device 

images is very promising for interventional MRI. Improved visualization and 

localization were achieved using the proposed method. The proposed method can help 

increase the accuracy of the interventional procedures. 
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Further research on the following aspects to improve the proposed method will 

be done by my lab mates and collaborators: 

1. Improving the acquisition speed by using compressive sensing, parallel 

imaging, and etc.; 

2. Real time reconstruction by improving the algorithm, or using GPU; 

3. Applying the proposed method to other interventional devices, such as stents.  

In addition, the proposed method has the potential to be applied for other 

applications, such as localization and visualization of implanted devices, such as 

implanted joint. 
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