156 research outputs found

    Evaluation of the color image and video processing chain and visual quality management for consumer systems

    Get PDF
    With the advent of novel digital display technologies, color processing is increasingly becoming a key aspect in consumer video applications. Today’s state-of-the-art displays require sophisticated color and image reproduction techniques in order to achieve larger screen size, higher luminance and higher resolution than ever before. However, from color science perspective, there are clearly opportunities for improvement in the color reproduction capabilities of various emerging and conventional display technologies. This research seeks to identify potential areas for improvement in color processing in a video processing chain. As part of this research, various processes involved in a typical video processing chain in consumer video applications were reviewed. Several published color and contrast enhancement algorithms were evaluated, and a novel algorithm was developed to enhance color and contrast in images and videos in an effective and coordinated manner. Further, a psychophysical technique was developed and implemented for performing visual evaluation of color image and consumer video quality. Based on the performance analysis and visual experiments involving various algorithms, guidelines were proposed for the development of an effective color and contrast enhancement method for images and video applications. It is hoped that the knowledge gained from this research will help build a better understanding of color processing and color quality management methods in consumer video

    No-reference analysis of decoded MPEG images for PSNR estimation and post-processing

    Get PDF
    We propose no-reference analysis and processing of DCT (Discrete Cosine Transform) coded images based on estimation of selected MPEG parameters from the decoded video. The goal is to assess MPEG video quality and perform post-processing without access to neither the original stream nor the code stream. Solutions are presented for MPEG-2 video. A method to estimate the quantization parameters of DCT coded images and MPEG I-frames at the macro-block level is presented. The results of this analysis is used for deblocking and deringing artifact reduction and no-reference PSNR estimation without code stream access. An adaptive deringing method using texture classification is presented. On the test set, the quantization parameters in MPEG-2 I-frames are estimated with an overall accuracy of 99.9% and the PSNR is estimated with an overall average error of 0.3dB. The deringing and deblocking algorithms yield improvements of 0.3dB on the MPEG-2 decoded test sequences

    Video post processing architectures

    Get PDF

    Hardware Implementation of a High Speed Deblocking Filter for the H.264 Video Codec

    Get PDF
    H.264/MPEG-4 part 10 or Advanced Video Coding (AVC) is a standard for video compression. MPEG-4 is currently one of the most widely used formats for recording, compression and distribution of high definition video. One feature of the AVC codec is the inclusion of an in-loop deblocking filter. The goal of the deblocking filter is to remove blocking artifacts that exist at macroblock boundaries. However, due to the complexity of the deblocking algorithm, the filter can easily account for one-third of the computational complexity of a decoder. In this thesis, a modification to the deblocking algorithm given in the AVC standard is presented. This modification allows the algorithm to finish the filtering of a macroblock to finish twenty clock cycles faster than previous single filter designs. This thesis also presents a hardware architecture of the H.264 deblocking filter to be used in the H.264 decoder. The developed architecture allows the filtering of videos streams using 4:2:2 chroma subsampling and 10-bit pixel precision in real-time. The filter was described in VHDL and synthesized for a Spartan-6 FPGA device. Timing analysis showed that is was capable of filtering a macroblock using 4:2:0 chroma subsampling in 124 clock cycles and 4:2:2 chroma subsampling streams in 162 clock cycles. The filter can also provide real-time deblocking of HDTV video (1920x1080) of up to 988 frames per second

    Scalable coding of HDTV pictures using the MPEG coder

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (leaves 118-121).by Adnan Husain Lawai.M.S

    FPGA Implementation of Procedures for Video Quality Assessment

    Get PDF
    Video resolutions used in a variety of media are constantly rising. While manufacturers struggle to perfect their screens, it is also important to ensure high quality of displayed image. Overall quality can be measured using Mean Opinion Score (MOS). Video quality can be aected by miscellaneous artifacts, appearing at every stage of video creation and transmission. In this paper, we present a solution to calculate four distinct video quality metrics that can be applied to a real-time video quality assessment system. Our assessment module is capable of processing 8K resolution in real time set at the level of 30 frames per second. The throughput of 2.19 GB/s surpasses the performance of pure software solutions. The module was created using a high-level language to concentrate on the architectural optimization

    Modeling the television process

    Get PDF
    Also issued as Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1986.Includes bibliographical references.Supported in part by members of the Center for Advanced Television Studies.Michael Anthony Isnardi

    Performance analysis of H.264 encoder for high-definition video transmission over ultra-wideband communication link.

    Get PDF
    With the technological advancement, entertainment has become revolutionized and the High-definition (HD) video has become a common feature of our modern amusement devices. Moreover, the demand for wireless transmission of HD video is rising increasingly for its ubiquitous nature, easy installation and relocation. The high bandwidth requirement is the main concern for wireless transmission of high quality video streams. Research has been going on by the consumer electronics industry to provide different solutions of this issue, for the last few years. In this research work, HD video transmission feasibility using the Ultra-wideband (UWB) communication channel is analyzed. The UWB channel is selected for its short-range, high-speed data transmission capability at low-cost, and low-power consumption. The maximum transmitting range of this technology is about 10 m at 100 Mbps data rate. Simulation is conducted by controlling key parameters, such as, in-loop deblocking filter, group of pictures, and quantization parameter of an H.264/AVC encoder. Here, standard HD video streams with different motion characteristics are used, and the impact of these parameters change on the reconstructed video quality and the broadcasting data rate are analyzed. Finally, a generalized parameters settings, and a video content dependent settings for an H.264/AVC encoder are proposed for different bandwidth requirements, as well as acceptable video quality. Performance evaluation of these parameters settings is performed, and the results are quite satisfactory as long as the symbol energy to noise power density ratio, Es/No, is above 15. With the proposed parameters settings, maximum 20 Mbps data rate is achieved with 33.5 dB Y-PSNR

    Architecture design of a scalable adaptive deblocking filter for H.264/AVC

    Get PDF
    Due to significant bit-rate savings and improved perceptual quality, H.264/AVC, the latest video compression standard from the Joint Video Team, is receiving widespread adoption. Greater coding efficiency relative to previous standards is a result of additional techniques and features. One important change is the inclusion of an in-loop deblocking filter for removal of blocking artifacts. Since the filter can easily account for one-third of the computational complexity of a decoder, its addition was a source of debate during the development of the H.264/AVC standard. Ample research on architecture design of the deblocking filter has been carried out, generally targeted toward high performance profiles. To the best of our knowledge no other research investigated designs that can be scaled from low-power extended profiles up to high performance profiles. This work investigated the design of a scalable architecture for the deblocking filter. Four different designs were implemented. The relative performance of the designs were then compared against each other and existing research through simulation. All designs were targeted towards a Xilinx Virtex 5 field programmable gate array (FPGA)
    • …
    corecore