2,827 research outputs found

    ‘Top 4’ strategies to mitigate targeted cyber intrusions: mandatory requirement explained

    Get PDF
    Introduction The Top 4 Strategies to Mitigate Targeted Cyber Intrusions (the Strategies) are the most effective security controls an organisation can implement at this point in time based on the our current visibility of the cyber threat environment. The Australian Signals Directorate (ASD), also known as the Defence Signals Directorate (DSD), assesses that implementing the Top 4 will mitigate at least 85% of the intrusion techniques that the Cyber Security Operations Centre (CSOC) responds to. For this reason, the Attorney‐General\u27s Department has updated the Australian Government Protective Security Policy Framework (PSPF) to require Australian government agencies to implement ICT protective security controls as detailed in the Australian Government Information Security Manual (ISM) to meet ASD\u27s Top 4 Strategies. Document scope This document provides specific implementation information on the Top 4 Strategies, including: information on the scope of and steps to manage the mandatory requirement; and some technical guidance for IT system administrators to planning and implementing the Top 4 Strategies in a typical Windows environment. This document focusses on implementing the Top 4 in a Windows environment, as the majority of government business is currently conducted using Windows operating systems. For agencies seeking implementation advice for systems that use other operating environments, ASD recommends seeking advice from your agency systems integrator or vendor in the first instance. Additionally, ASD recommends conducting research using open source publications, forums and resources available on the operating system and how each of the Top 4 could be implemented. If your agency finds it is not possible or feasible to implement the Top 4 in a non‐windows environment, you should follow appropriate risk‐management practices as outlined in the ISM

    Project BeARCAT : Baselining, Automation and Response for CAV Testbed Cyber Security : Connected Vehicle & Infrastructure Security Assessment

    Get PDF
    Connected, software-based systems are a driver in advancing the technology of transportation systems. Advanced automated and autonomous vehicles, together with electrification, will help reduce congestion, accidents and emissions. Meanwhile, vehicle manufacturers see advanced technology as enhancing their products in a competitive market. However, as many decades of using home and enterprise computer systems have shown, connectivity allows a system to become a target for criminal intentions. Cyber-based threats to any system are a problem; in transportation, there is the added safety implication of dealing with moving vehicles and the passengers within

    Identifying Vulnerabilities of Industrial Control Systems using Evolutionary Multiobjective Optimisation

    Full text link
    In this paper we propose a novel methodology to assist in identifying vulnerabilities in a real-world complex heterogeneous industrial control systems (ICS) using two evolutionary multiobjective optimisation (EMO) algorithms, NSGA-II and SPEA2. Our approach is evaluated on a well known benchmark chemical plant simulator, the Tennessee Eastman (TE) process model. We identified vulnerabilities in individual components of the TE model and then made use of these to generate combinatorial attacks to damage the safety of the system, and to cause economic loss. Results were compared against random attacks, and the performance of the EMO algorithms were evaluated using hypervolume, spread and inverted generational distance (IGD) metrics. A defence against these attacks in the form of a novel intrusion detection system was developed, using a number of machine learning algorithms. Designed approach was further tested against the developed detection methods. Results demonstrate that EMO algorithms are a promising tool in the identification of the most vulnerable components of ICS, and weaknesses of any existing detection systems in place to protect the system. The proposed approach can be used by control and security engineers to design security aware control, and test the effectiveness of security mechanisms, both during design, and later during system operation.Comment: 25 page

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    Enhancing cyber assets visibility for effective attack surface management : Cyber Asset Attack Surface Management based on Knowledge Graph

    Get PDF
    The contemporary digital landscape is filled with challenges, chief among them being the management and security of cyber assets, including the ever-growing shadow IT. The evolving nature of the technology landscape has resulted in an expansive system of solutions, making it challenging to select and deploy compatible solutions in a structured manner. This thesis explores the critical role of Cyber Asset Attack Surface Management (CAASM) technologies in managing cyber attack surfaces, focusing on the open-source CAASM tool, Starbase, by JupiterOne. It starts by underlining the importance of comprehending the cyber assets that need defending. It acknowledges the Cyber Defense Matrix as a methodical and flexible approach to understanding and addressing cyber security challenges. A comprehensive analysis of market trends and business needs validated the necessity of asset security management tools as fundamental components in firms' security journeys. CAASM has been selected as a promising solution among various tools due to its capabilities, ease of use, and seamless integration with cloud environments using APIs, addressing shadow IT challenges. A practical use case involving the integration of Starbase with GitHub was developed to demonstrate the CAASM's usability and flexibility in managing cyber assets in organizations of varying sizes. The use case enhanced the knowledge graph's aesthetics and usability using Neo4j Desktop and Neo4j Bloom, making it accessible and insightful even for non-technical users. The thesis concludes with practical guidelines in the appendices and on GitHub for reproducing the use case

    Adversarial AI Testcases for Maritime Autonomous Systems

    Get PDF
    Contemporary maritime operations such as shipping are a vital component constituting global trade and defence. The evolution towards maritime autonomous systems, often providing significant benefits (e.g., cost, physical safety), requires the utilisation of artificial intelligence (AI) to automate the functions of a conventional crew. However, unsecured AI systems can be plagued with vulnerabilities naturally inherent within complex AI models. The adversarial AI threat, primarily only evaluated in a laboratory environment, increases the likelihood of strategic adversarial exploitation and attacks on mission-critical AI, including maritime autonomous systems. This work evaluates AI threats to maritime autonomous systems in situ. The results show that multiple attacks can be used against real-world maritime autonomous systems with a range of lethality. However, the effects of AI attacks vary in a dynamic and complex environment from that proposed in lower entropy laboratory environments. We propose a set of adversarial test examples and demonstrate their use, specifically in the marine environment. The results of this paper highlight security risks and deliver a set of principles to mitigate threats to AI, throughout the AI lifecycle, in an evolving threat landscape.</jats:p

    Cyber Threats Facing Autonomous and Connected Vehicles: Future Challenges

    Get PDF
    Vehicles are currently being developed and sold with increasing levels of connectivity and automation. As with all networked computing devices, increased connectivity often results in a heightened risk of a cyber security attack. Furthermore, increased automation exacerbates any risk by increasing the opportunities for the adversary to implement a successful attack. In this paper, a large volume of publicly accessible literature is reviewed and compartmentalised based on the vulnerabilities identified and mitigation techniques developed. This review highlighted that the majority of research is reactive and vulnerabilities are often discovered by friendly adversaries (white-hat hackers). Many gaps in the knowledge base were identified. Priority should be given to address these knowledge gaps to minimise future cyber security risks in the connected and autonomous vehicle sector

    An Integrated Cybersecurity Risk Management (I-CSRM) Framework for Critical Infrastructure Protection

    Get PDF
    Risk management plays a vital role in tackling cyber threats within the Cyber-Physical System (CPS) for overall system resilience. It enables identifying critical assets, vulnerabilities, and threats and determining suitable proactive control measures to tackle the risks. However, due to the increased complexity of the CPS, cyber-attacks nowadays are more sophisticated and less predictable, which makes risk management task more challenging. This research aims for an effective Cyber Security Risk Management (CSRM) practice using assets criticality, predication of risk types and evaluating the effectiveness of existing controls. We follow a number of techniques for the proposed unified approach including fuzzy set theory for the asset criticality, machine learning classifiers for the risk predication and Comprehensive Assessment Model (CAM) for evaluating the effectiveness of the existing controls. The proposed approach considers relevant CSRM concepts such as threat actor attack pattern, Tactic, Technique and Procedure (TTP), controls and assets and maps these concepts with the VERIS community dataset (VCDB) features for the purpose of risk predication. Also, the tool serves as an additional component of the proposed framework that enables asset criticality, risk and control effectiveness calculation for a continuous risk assessment. Lastly, the thesis employs a case study to validate the proposed i-CSRM framework and i-CSRMT in terms of applicability. Stakeholder feedback is collected and evaluated using critical criteria such as ease of use, relevance, and usability. The analysis results illustrate the validity and acceptability of both the framework and tool for an effective risk management practice within a real-world environment. The experimental results reveal that using the fuzzy set theory in assessing assets' criticality, supports stakeholder for an effective risk management practice. Furthermore, the results have demonstrated the machine learning classifiers’ have shown exemplary performance in predicting different risk types including denial of service, cyber espionage, and Crimeware. An accurate prediction can help organisations model uncertainty with machine learning classifiers, detect frequent cyber-attacks, affected assets, risk types, and employ the necessary corrective actions for its mitigations. Lastly, to evaluate the effectiveness of the existing controls, the CAM approach is used, and the result shows that some controls such as network intrusion, authentication, and anti-virus show high efficacy in controlling or reducing risks. Evaluating control effectiveness helps organisations to know how effective the controls are in reducing or preventing any form of risk before an attack occurs. Also, organisations can implement new controls earlier. The main advantage of using the CAM approach is that the parameters used are objective, consistent and applicable to CPS
    • 

    corecore