2,019 research outputs found

    Scather: programming with multi-party computation and MapReduce

    Full text link
    We present a prototype of a distributed computational infrastructure, an associated high level programming language, and an underlying formal framework that allow multiple parties to leverage their own cloud-based computational resources (capable of supporting MapReduce [27] operations) in concert with multi-party computation (MPC) to execute statistical analysis algorithms that have privacy-preserving properties. Our architecture allows a data analyst unfamiliar with MPC to: (1) author an analysis algorithm that is agnostic with regard to data privacy policies, (2) to use an automated process to derive algorithm implementation variants that have different privacy and performance properties, and (3) to compile those implementation variants so that they can be deployed on an infrastructures that allows computations to take place locally within each participant’s MapReduce cluster as well as across all the participants’ clusters using an MPC protocol. We describe implementation details of the architecture, discuss and demonstrate how the formal framework enables the exploration of tradeoffs between the efficiency and privacy properties of an analysis algorithm, and present two example applications that illustrate how such an infrastructure can be utilized in practice.This work was supported in part by NSF Grants: #1430145, #1414119, #1347522, and #1012798

    A DevOps approach to integration of software components in an EU research project

    Get PDF
    We present a description of the development and deployment infrastructure being created to support the integration effort of HARNESS, an EU FP7 project. HARNESS is a multi-partner research project intended to bring the power of heterogeneous resources to the cloud. It consists of a number of different services and technologies that interact with the OpenStack cloud computing platform at various levels. Many of these components are being developed independently by different teams at different locations across Europe, and keeping the work fully integrated is a challenge. We use a combination of Vagrant based virtual machines, Docker containers, and Ansible playbooks to provide a consistent and up-to-date environment to each developer. The same playbooks used to configure local virtual machines are also used to manage a static testbed with heterogeneous compute and storage devices, and to automate ephemeral larger-scale deployments to Grid5000. Access to internal projects is managed by GitLab, and automated testing of services within Docker-based environments and integrated deployments within virtual-machines is provided by Buildbot

    Turbo-Aggregate: Breaking the Quadratic Aggregation Barrier in Secure Federated Learning

    Get PDF
    Federated learning is a distributed framework for training machine learning models over the data residing at mobile devices, while protecting the privacy of individual users. A major bottleneck in scaling federated learning to a large number of users is the overhead of secure model aggregation across many users. In particular, the overhead of the state-of-the-art protocols for secure model aggregation grows quadratically with the number of users. In this paper, we propose the first secure aggregation framework, named Turbo-Aggregate, that in a network with NN users achieves a secure aggregation overhead of O(NlogN)O(N\log{N}), as opposed to O(N2)O(N^2), while tolerating up to a user dropout rate of 50%50\%. Turbo-Aggregate employs a multi-group circular strategy for efficient model aggregation, and leverages additive secret sharing and novel coding techniques for injecting aggregation redundancy in order to handle user dropouts while guaranteeing user privacy. We experimentally demonstrate that Turbo-Aggregate achieves a total running time that grows almost linear in the number of users, and provides up to 40×40\times speedup over the state-of-the-art protocols with up to N=200N=200 users. Our experiments also demonstrate the impact of model size and bandwidth on the performance of Turbo-Aggregate

    Reliable and Low-Latency Fronthaul for Tactile Internet Applications

    Get PDF
    With the emergence of Cloud-RAN as one of the dominant architectural solutions for next-generation mobile networks, the reliability and latency on the fronthaul (FH) segment become critical performance metrics for applications such as the Tactile Internet. Ensuring FH performance is further complicated by the switch from point-to-point dedicated FH links to packet-based multi-hop FH networks. This change is largely justified by the fact that packet-based fronthauling allows the deployment of FH networks on the existing Ethernet infrastructure. This paper proposes to improve reliability and latency of packet-based fronthauling by means of multi-path diversity and erasure coding of the MAC frames transported by the FH network. Under a probabilistic model that assumes a single service, the average latency required to obtain reliable FH transport and the reliability-latency trade-off are first investigated. The analytical results are then validated and complemented by a numerical study that accounts for the coexistence of enhanced Mobile BroadBand (eMBB) and Ultra-Reliable Low-Latency (URLLC) services in 5G networks by comparing orthogonal and non-orthogonal sharing of FH resources.Comment: 11pages, 13 figures, 3 bio photo

    Secure kk-ish Nearest Neighbors Classifier

    Get PDF
    In machine learning, classifiers are used to predict a class of a given query based on an existing (classified) database. Given a database S of n d-dimensional points and a d-dimensional query q, the k-nearest neighbors (kNN) classifier assigns q with the majority class of its k nearest neighbors in S. In the secure version of kNN, S and q are owned by two different parties that do not want to share their data. Unfortunately, all known solutions for secure kNN either require a large communication complexity between the parties, or are very inefficient to run. In this work we present a classifier based on kNN, that can be implemented efficiently with homomorphic encryption (HE). The efficiency of our classifier comes from a relaxation we make on kNN, where we allow it to consider kappa nearest neighbors for kappa ~ k with some probability. We therefore call our classifier k-ish Nearest Neighbors (k-ish NN). The success probability of our solution depends on the distribution of the distances from q to S and increase as its statistical distance to Gaussian decrease. To implement our classifier we introduce the concept of double-blinded coin-toss. In a doubly-blinded coin-toss the success probability as well as the output of the toss are encrypted. We use this coin-toss to efficiently approximate the average and variance of the distances from q to S. We believe these two techniques may be of independent interest. When implemented with HE, the k-ish NN has a circuit depth that is independent of n, therefore making it scalable. We also implemented our classifier in an open source library based on HELib and tested it on a breast tumor database. The accuracy of our classifier (F_1 score) were 98\% and classification took less than 3 hours compared to (estimated) weeks in current HE implementations
    corecore