
A DevOps Approach to Integration of Software
Components in an EU Research Project

Mark Stillwell
m.stillwell@imperial.ac.uk

Jose G. F. Coutinho
gabriel.figueiredo@imperial.ac.uk

Imperial College London
United Kingdom

ABSTRACT
We present a description of the development and deployment infras-
tructure being created to support the integration effort of HARNESS,
an EU FP7 project. HARNESS is a multi-partner research project
intended to bring the power of heterogeneous resources to the cloud.
It consists of a number of different services and technologies that
interact with the OpenStack cloud computing platform at various
levels. Many of these components are being developed indepen-
dently by different teams at different locations across Europe, and
keeping the work fully integrated is a challenge. We use a combi-
nation of Vagrant based virtual machines, Docker containers, and
Ansible playbooks to provide a consistent and up-to-date environ-
ment to each developer. The same playbooks used to configure
local virtual machines are also used to manage a static testbed
with heterogeneous compute and storage devices, and to automate
ephemeral larger-scale deployments to Grid’5000. Access to in-
ternal projects is managed by GitLab, and automated testing of
services within Docker-based environments and integrated deploy-
ments within virtual-machines is provided by Buildbot.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging; D.2.7
[Software Engineering]: Distribution, Maintenance, and Enhance-
ment; D.2.9 [Software Engineering]: Software configuration man-
agement

Keywords
DevOps, Configuration Management, Automated Testing, Ansible,
Vagrant, Docker, OpenStack, GitLab, BuildBot

1. INTRODUCTION
In the past most academic software was developed for specific

purposes by individuals or small teams of developers. However,
current funding policies of agencies such as the EPSRC, EU FP7
commission, and HORIZON 2020 encourage both multi-partner
coalitions and development of high-quality software intended for
distribution and reuse [14, 15]. While these trends are encouraging

in terms of increasing knowledge exchange and reducing wasted
or repeated effort, meeting the new requirements poses challenges
for project leaders who need to ensure that work undertaken by
independent organizations is coordinated to an appropriate degree in
order to assure quality. Furthermore, a recent study [19] compared
four research projects conducted by academics over the span of
nine years, and concluded that there is a strong correlation between
publication output and the software development effort invested
three years prior to publication, thus highlighting the importance
of software engineering practices to boost the number of papers
stemming from large research projects.

In this paper we describe how developers on the HARNESS
project [7] address this issue through an approach based on version-
controlled configuration management, automated software deploy-
ment, and continuous integration. While software development in
industry faces similar difficulties, there are differences in the objec-
tives, incentives, and measures of success between commercial and
academic research projects, and this work is intended primarily to
address the needs of the latter. HARNESS is an EU FP7 research
project with the objective of making it easier for cloud providers
and consumers alike to take advantage of heterogeneous resources,
including, computational accelerators (GPGPUs and FPGAs), pro-
grammable routers and heterogeneous storage devices. The key mo-
tivation for incorporating heterogeneity is to offer a richer context
for price/performance trade offs, and to bring wholly new degrees of
freedom to the cloud resource allocation and optimization problem.

A key challenge of the HARNESS project, and indeed most EU
research projects [17], is that it requires bringing together specialists
from a number of geographically distributed partner institutions in
academia and industry. Individual components addressing different
classes of heterogeneous resources or requirements can be developed
independently, but there is a need to coordinate effort and ensure
that API specifications are adhered to and consistently interpreted,
so that components can be deployed in a such a way as to provide a
coherent distributed computing infrastructure. While responsibility
for the quality of the individual components is shared among a
number of lead institutions and is managed by the work package
leader for each component, there is a need to provide a way to test
and evaluate the fully integrated deployment as well. Finally, as this
is an academic research project, deployments and benchmarking
experiments should be made as reproducible as possible in order to
facilitate verification of research results. To address these challenges
we present in this paper a development and operations (DevOps)
workflow that allows: (a) teams of developers to work autonomously
on specific parts of the software architecture; (b) automated testing
of individual projects as well as the integrated system deployments;
(c) reproducible automated deployment on heterogeneous and large-
scale testbeds.

Service
Layer

Infrastructure
Layer

Platform
Layer

volume
reservation

available
OSDs

OpenStack
Nova Controller

IRM-NOVA
VMs

Cross-Resource Scheduler

Compute
DB

IRM-XtreemFS
storage devices

IRM-SHEPARD
HW accelerators

XtreemFS
Directory

MaxelerOS
Orchestrator

OpenStack
Neutron Controller

switches

XtreemFS client

MPC-XMPC-X

DFE
GPGPU
FPGA

OSDs/
MRCs

AlphaData OpenCL MaxelerOS

execute
task

status

Executive POSIX

read/write
operations

Application
Module

ConPaaS

IRM-NEUTRON
network resources

Neutron Agent

servers

submit application feedback

feedback
submit

app, manifest, SLO

XtreemFS
Scheduler

available resources
feedback

reservation
request

Application Manager (AM)Application Manager (AM)

UsersUsers

ConPaaS agent

virtual machines

IRM-NET
networked VMs

Nova Compute

PCIe device reservation
SHEPARD
Compute

allocation request feedback

Figure 1: The HARNESS cloud architecture consists of a suite
of loosely coupled distributed services that interact with each
other through an HTTP/REST API. This microservice architec-
ture puts considerable overhead in managing the development
and deployment processes.

The remainder of this paper is structured as follows. In Section 2
we describe the HARNESS cloud architecture. and explain why
a DevOps approach is needed to maintain high quality output. In
Section 3 we present a high-level view of the HARNESS DevOps
workflow. In Section 4 we describe how various deployment tools
help achieve reproducibility and why this is important for testing
and quality assurance. In Section 5 we report our automated testing
infrastructure and our novel methodology for testing full systems
deployments. In Section 6 we describe two platforms where HAR-
NESS is being deployed. Finally, we conclude with a summary and
plans for future work in Section 7.

2. HARNESS CLOUD ARCHITECTURE
The HARNESS cloud architecture is divided into three main parts:

a platform layer in charge of managing applications that works on
behalf of the cloud tenant, an infrastructure layer responsible for
managing resources that works on behalf of the cloud provider, and
a service layer where cloud applications are deployed and executed.
An example HARNESS cloud platform, currently being developed
as a proof-of-concept, is presented in Figure 1. This platform com-
bines (a) VM and network resources managed by OpenStack [10],
(b) networked FPGA devices managed by MaxelerOS Orchestra-
tor [9], (c) OpenCL accelerators managed by SHEPARD [21], and
(d) heterogeneous storage devices managed by XtreemFS [23].

The HARNESS architecture is designed to be open and modular,
allowing arbitrary types of resources (compute, storage and network)
to be integrated and leased to cloud users. Each resource type has
a specially designed Infrastructure Resource Manager (IRM) that
understands its internal semantics while presenting a uniform API to
the Cross-Resource Scheduler component (CRS). The CRS acts as
the central scheduling module and has a global view of all resources
available in the data-center. This structure, wherein a larger project
is made up of a suite of fine-grained collaborative services, each
running on its own process and communicating with each other
through a well-defined HTTP/REST API, is commonly referred to
as a microservice software architecture [18]. As a consequence of
this design decision, services are loosely coupled, allowing different
developer teams to work and maintain each service autonomously.
As an alternative to the microservice architecture, there is the mono-
lithic architecture, in which applications can be realized into a single
logical executable.

Cloud tenants submit their applications and performance/cost
objectives through the ConPaaS frontend interface [4]. ConPaaS
is responsible for providing an entry point to cloud users, as well
as handling user authentication and creating a context for applica-
tion management. An application manager instance is generated
whenever an application is submitted on the HARNESS platform,
and is responsible for overseeing the life-cycle of the application.
For instance, the application manager automatically runs a suite of
micro-benchmarks to generate a performance profile for a submitted
application, and then works with the CRS module to determine the
best way to run it, taking into account both user-specified perfor-
mance and cost objectives and the demands of competing users.
Once resources have been provisioned by the CRS, the application
manager deploys the application on allocated VMs. The application
can access other resources (such as GPGPUs, FPGAs and hetero-
geneous storage) allocated in the previous step by interacting with
management systems (daemons) running on the VMs.

While there are many benefits to following a microservice archi-
tecture, it does require each service to be built and tested individually,
and then deployed with other services in order to ensure that all these
modules stay up and collaborate with each other. Hence, managing
and rolling out all these services puts considerable overhead on the
development and operations processes, requiring a high degree of
deployment automation to ship and configure the integrated system.
While this problem is also commonly encountered in real world
systems, dealing with it is still an area of active development and
research and there are no widely accepted standard solutions. In the
next section, we describe our development and operations processes
in the context of the HARNESS project.

3. DEVOPS WORKFLOW
Figure 2 illustrates the HARNESS DevOps workflow, which cap-

tures the process of developing the HARNESS cloud system from
version control to release. Our key goal is to allow different teams
of programmers to develop and maintain each service autonomously,
while also enabling collaboration between teams and providing
feedback as soon as possible about the flow of changes and their
impact on the combined system. The HARNESS project has four
development teams and one integration team. Each development
team is responsible for maintaining a specific part of the architecture
belonging to one of four technical areas: compute, network, storage
and platform. The integration team is responsible for ensuring that
all these services are properly tested when combined and deployed
on the HARNESS testbeds (see Section 6).

All the development and integration teams share a single HAR-
NESS GitLab server. GitLab is a web-based Git repository manager

Automated
Unit Tests

Development
Team

Version
Control

check-in

F

trigger

feedback

check-in
trigger

Automated
Integration Tests

trigger

F

P

feedback

check-in

release approval

P

Integration
Team Release

feedback

feedback
P

feedback

F = fail
P = pass

deployment and
automated

testing in a virtual
development
environment

F F

Testbed
Deployment

check-in
trigger

P

feedback
P

feedbackF
P

deployment and
testing in Grid’5000 and

Imperial Cluster testbeds

deployment and
testing in Grid’5000 and

Imperial Cluster testbeds

trigger

Figure 2: The HARNESS DevOps workflow.

that supports multiple users, groups, and owner-specified access con-
trols for repositories. GitLab provides an open-source alternative to
GitHub that can be installed on private infrastructure. With GitLab,
each developer team stores a specific project (such as an architecture
component or an automated deployment project) in its own Git
repository, with all HARNESS software contributions aggregated
into a single central server acting as the authoritative reference. In
HARNESS, each project has one owner who is responsible for main-
taining the project and has exclusive access to the master branch.
The contributors (other members of the development team) can only
make changes, such as adding experimental features or fixing bugs,
by forking the master branch. Hence, rather than logging an issue,
contributors can fork (copy) the repository, make updates, and then
submit a pull (merge) request to the project owner. The project
owner can then review the changes and accept or reject the merge
request by exploiting GitLab’s advanced tracking of the relationship
between forks and its code reviewing facilities.

Whenever the owner of a project pushes a commit to GitLab or
merges in changes, it triggers a set of automated tests (see Section 5).
First, unit tests associated with each project are executed. If any
of these tests fail, then the project owner is notified. Otherwise,
automated integration tests are queued to run at specific times. In this
case, an integration deployment project pulls the latest version of all
HARNESS components from various master branches, deploys the
HARNESS software stack on virtual machines, and runs tests that
aim to exercise all critical features of the system. If any integration
test fails, then both the integration team and the project owner
(whose commit triggered the integration tests) are notified by email.

Periodically, the integration team deploys and tests the HAR-
NESS cloud system in two HARNESS testbeds (see Section 6),
namely Grid’5000 and the Imperial Cluster, depending on the types
of updates submitted by the development teams. This process is

manually initiated but almost entirely automated. In the case of
Grid’5000, deploying HARNESS requires requesting nodes from
the batch scheduler and provisioning them with a base Ubuntu 14.04
operating system [16], but after that point the deployment infras-
tructure can take over to install and configure all of the HARNESS
software and its dependencies without human intervention. If any
deployment test fails, then the integration team writes one or more
integration tests that can flag a particular fault the next time the
tests are executed. In addition, the integration team also notifies the
development team of any bug, who in turn can write one or more
unit tests to flag the problem at the component level.

4. REPRODUCIBLE DEPLOYMENT
One of the defining characteristics of a DevOps-based approach is

that the testing environments should reliably reflect the production
environments. That is, the environments themselves should be, to
the extent feasible, stateless and reproducible. Statelessness in this
case refers simply to the idea that the runtime environment should
not change over time in a way that might affect the behavior of
running applications. It is difficult, if not impossible, to achieve
true statelessness on real-world machines, but many of the same
benefits can be achieved by isolating running services from each
other and the host environment through either virtualization or op-
erating system specific methods of containerization. In order to
achieve reproducibility we focus on automation and version control.
Automation allows us to ensure that all configuration steps are fully
documented, while version control lets us see how configurations
have evolved over time, and potentially to review the differences
in configuration between running systems. An additional benefit
of automation is that it can ease deployment to new target systems,
potentially increasing the number of operating production systems
and reducing downtime in the event of catastrophic failure.

4.1 Containerized Services
An operating system container is an isolated environment pro-

vided by an operation system kernel rather than a hypervisor. While
hypervisors achieve isolation between environments through high-
overhead techniques like intercepting interrupts in order to provide
the appearance of a physically isolated machine, containers provide
a lighter-weight approach. In the case of the Linux operating sys-
tem, containerization is primarily achieved by replicating various
kernel data structures to provide separate namespaces to running
processes. From the perspective of the operating system, processes
running within containers are no different from processes running
outside of containers, they just have a more constrained view of the
system. Thus, containerized services can run in isolation at native or
near-native performance (there may be some small overheads due to
an extra layer of abstraction for some operations) [24]. Containers
have an additional benefit in that, since services can be launched
directly from the host, and links can be made easily between con-
tainers or between a container and the host [5], there is no need
to deploy a complete stack of running services in every container,
which improves efficiency as compared with full virtual machines.
While some work may be needed to give containers direct access to
hardware devices, it is nonetheless simpler to do so than to imple-
ment similar functionality for virtual machines. Some drawbacks of
containers relative to virtual machines are that environments must
all share the same kernel version, and there may be some difficulty
in management of access to the kernel module space.

Docker is a software technology for managing containerized soft-
ware deployments. As with OpenStack, Docker provides an inter-
face and various databases to track conceptual objects, while leaving
implementation primarily up to other lower-level technologies [5].
Application specific software runtime environments are described
in a “Dockerfile” that can be committed to the software repository
or maintained in a separate project. Dockerfiles give instructions for
reproducibly creating an image from a standard binary base. There
are base images available representing the environments provided by
most of the mainline Linux distributions, though it should be noted
that applications may not function in precisely the same way within
a container as on the equivalent full operating system. In particular,
through experience we have learned that in the standard Ubuntu
image the upstart service does not work correctly, so daemons need
to be started either directly or by using a third-party application.

The main advantages of deploying services within containers
rather than directly on the host system are 1) that the services them-
selves are implemented and tested within the same environment,
which includes all dependencies and so there is no need to worry
about the configuration of the host and 2) deploying services does
not affect the host’s operating environment, and so there is no con-
cern, for example, that deploying a service B will result in breaking
some unrelated service A because of dependencies on incompat-
ible libraries. This latter benefit also means that services can be
un-installed and reinitialized cleanly, without worrying that they are
leaving behind old versions of data or configuration files that may
affect the running of future service deployments. Within HARNESS,
many components are implemented as python daemons that need
to talk or be available on different network interfaces, which is the
ideal situation for docker based deployment. In recent versions of
the platform we are moving away from simply running these dae-
mons directly on the host to having Dockerfiles embedded within the
projects and having docker as the preferred means of deployment.

4.2 Service Orchestration and Configuration
In recent years there has been a movement toward increasing

the use of automation for systems administration and configuration

management tasks. This has been motivated by a number of factors,
including: the difficulty of tracking configuration changes across
multiple systems, the need to ensure configurations are applied con-
sistently to ephemeral cloud-based systems, and the desire to make
configurations reproducible across platforms. Leading technologies
in this area include Puppet [11], Chef [3], Salt [12], and Ansible [1],
among others. While each of these has its advantages and disadvan-
tages, Ansible stands out for its relatively low barrier to entry for
new projects: client systems need only ssh and Python; there is no
need to install a client service or manage a separate trusted certifi-
cate registry as with Puppet or Chef; and it is conceptually simple:
nodes are listed and categorized into groups within an “inventory”
(usually a static configuration file, but potentially a dynamic script),
while configuration changes are described within “playbooks” as
sequences of tasks applied in parallel to one or more nodes or groups
of nodes, with checks implemented within modules to ensure idem-
potency (that is, if a configuration change is applied once then it
should not be applied a second time, even if the same set of Ansible
tasks are run multiple times on the same system) [1]. In Puppet, by
contrast, there is a need to fully describe dependencies between con-
figuration directives to ensure that changes are consistently applied
in the same order when there are possible side-effects [20].

As discussed in the previous section, container-management tech-
nologies like Docker are extremely useful for creating reproducible
environments for individual services, but there is still a need for
higher-order orchestration and configuration management. For one
thing, not every service can be deployed within a Docker container:
examples include Docker itself (which can run in a container, but
there first needs to be an installation on the base operating system)
and services that need to cross standard container boundaries, like
OpenStack Neutron, which must be able to control the host network-
ing interface. It should be emphasized that services like Neutron
can run in containers, but getting them to function correctly requires
significant effort and is not yet widely supported. Another reason
that an orchestration is required is that even if all services are con-
tainerized, there is still a need to place them on particular hosts
and make sure that required configuration information (particularly
secret information, like passwords) is distributed correctly to the
services that need it.

The HARNESS deployment project contains several Ansible
playbooks and related configuration files describing how the various
components are instantiated on different nodes within the distributed
system. There is an inventory file for each deployment target, in-
cluding the automated testing environment. Each inventory groups
hosts in the target environment by services run in the deployment
and sets deployment-specific configuration variables. Currently, all
of the deployment targets make use of the same set of playbooks.
The “getreqs.yml” playbook first fetches related projects, or roles,
each of which describes the tasks required to instantiate a number of
standard services: mysql (database), rabbitmq (messaging), docker
(container management), keystone (OpenStack authentication and
identity), glance (OpenStack virtual machine image service), nova
controller (OpenStack virtual machine frontend API and manage-
ment services), neutron controller (OpenStack virtual network fron-
tend API and management services), neutron network (OpenStack
virtual network gateway service) and nova compute (OpenStack
virtual machine management service). The source code and Dock-
erfiles for each of the HARNESS services are also fetched, so that
these can ultimately be synced to appropriate target nodes in order
to build the required Docker images. The “deploy.yml” playbook
contains instructions for actually deploying the HARNESS platform,
while the “test.yml” playbook should be run after the deployment to
ensure that the integrated system functions as expected.

4.3 Virtual Machine Environments
Yet another advantage of automated, reproducible deployment is

that it makes it possible for developers to create personal testbeds so
that they can see how their individual components function within
the larger system and make changes without fear of causing prob-
lems for others. The most practical way to go about this is to
provision the full system in a virtual machine based environment
on the developer workstation—this way the environment can be
destroyed and recreated in a pristine state relatively quickly, without
having to worry about reconfiguring the base operating system on a
physical system. Of course, setting up virtual machines, particularly
multiple machines connected to each other by virtual network links,
is in itself a complicated process, but fortunately one that is also
amenable to a certain level of abstraction and automation.

Vagrant is used to manage the creation and configuration of vir-
tual machines for testing environments (see Section 5). Vagrant is
a software tool that provides a simple and consistent configuration
and command line interface for developers to manage virtual ma-
chines [13]. For each project, a “Vagrantfile” is created within the
root directory of the software project and can be included within
the source control system. After this, developers can simply run
“vagrant up” to have all of the virtual machines required for local test-
ing made available, with networking and local file synchronization
set up automatically. Vagrant has hooks that are configured to call
Ansible to configure a full HARNESS software deployment auto-
matically. Critically, Vagrant can be used to manage the creation of
both local virtual machines in VirtualBox on developer workstations
and virtual machines that run within the testing environment.

5. AUTOMATED TESTING
Automating tests is a fairly standard procedure with the aim of

minimizing the number of defects of a software system within a
standard environment. These tests need to ensure that not only
individual services or packages function correctly, but that the in-
dividual parts work together as part of a coherent whole. In this
context, development and integration teams can be automatically
notified by email or access a web service interface to verify if their
projects are passing—or failing—the automated tests.

There are a number of standard solutions for automating testing
and continuous integration. Perhaps the most popular and widely
deployed of these is Jenkins [8]. However, the normal way to config-
ure Jenkins and set up projects is through its interactive web console,
whereas we wished to take a DevOps-oriented approach and manage
the configuration and deployment of the testing environment using
Ansible. For this reason, along with its Python implementation,
we use Buildbot to provide an automated testing service for the
HARNESS project.

Figure 3 illustrates the HARNESS Buildbot architecture. With
Buildbot, it is possible to define a number of automated tests to run,
and to have those tests invoked whenever changes are made to a
specified repository. The architecture of Buildbot consists of one or
more master nodes which monitor repositories and generate tasks,
and multiple buildslave nodes to run queued tasks [2].

For the HARNESS unit tests, the Buildbot master monitors spec-
ified projects. When changes are detected, Buildbot checks them
out, and looks for a run_tests.sh script in the root directory. If
such a file is found then the script is run within a Docker container
using the standard Ubuntu 14.04 image as illustrated in Figure 3(a).
The buildslaves, in this case, run the unit tests on standard virtual
machines deployed within the Imperial DoC cloud infrastructure.

The integration tests, on the other hand, require all the HARNESS
cloud services to be deployed, including OpenStack, incurring a

GitLab
server

Git
repositories

poll

manage

change
status

build
commands

build
commands

Imperial DoC Cloud
unit test buildslave

(a)

build slave
process

build slave
process

Docker
container

Docker
container

Physical Server
integration test buildslave

(b)

build slave process

Vagrant
manage

manage
VM 1

VM 2

Multi-VM Vagrant deployment
running all the HARNESS cloud services,
which interact with each other.
Some of the VMs run services deployed
within Docker containers

Each component is tested in
isolation within a Docker
container

BuildBot
Master

Figure 3: Automated testing workflow using Buildbot. Indi-
vidual components tested include the services illustrated in Fig-
ure 1, including the Application Manager, the Cross-Resource
Scheduler, and the IRM components which interface various
resource managers.

higher runtime overhead than running isolated unit tests. For this
reason, we run the integrated tests on dedicated physical nodes as
illustrated in Figure 3(b). In this case, the Buildbot service runs Va-
grant with the same configuration file as used by developers to create
and test systems locally, and the output is monitored to ensure both
that the Ansible configuration and testing scripts run successfully,
and that the implementation is idempotent (that is, that subsequent
runs of the vagrant provision command do not result in changes
to the configuration of the deployed virtual machines). Our current
automated integration tests run on top of multiple Vagrant spawned
VMs, where some of these VMs run HARNESS cloud services
within Docker containers. These integration tests are triggered and
queued whenever a change is pushed to any project on which the
integrated environment depends. However, due to high overheads,
these builds are only run when all of the required projects have
passed their unit tests, to a maximum of a few times per hour.

6. HARNESS TESTBEDS
There are two main deployment testbeds for the HARNESS cloud

platform: the Imperial Cluster, which offers a relatively small-scale
static testbed with heterogeneous compute and storage devices, and
Grid’5000, which is a large-scale research testbed to support parallel
and distributed computing experiments.

The Imperial Cluster testbed infrastructure, which is partly man-
aged by the Custom Computing Group at Imperial College London,
consists of a total of 6 compute nodes, 16 CPU cores, 2 GPGPUs,
heterogeneous storage devices (HDD and SSD), and 3 MPC-X boxes
harboring a total of 24 Dataflow Engines (DFEs). A Dataflow En-
gine is a general purpose reconfigurable device using an FPGA at its
core and RAM for bulk storage. In our testbed, DFEs are co-located
in MPC-X appliances which are in turn connected to select hosts
via an Infiniband network. Dataflow computing technology [22]
has been used successfully in fields such as oil and gas exploration
and financial risk analytics, while research has been conducted in
scientific areas as diverse as fluid dynamics and quantum chemistry.

The other main deployment target, Grid’5000, is a large-scale
research testbed to support parallel and distributed computing exper-

iments. This testbed is distributed across 10 sites (mostly in France),
with 1000 compute nodes and 8000 cores. It features a diverse set
of technologies, including 10G Ethernet, Infiniband, GPUs, Xeon
PHI, and data clusters. One key capability of Grid’5000 is that it is
highly reconfigurable, providing bare-metal deployment that allows
a fully customized software stack (including the operating system)
and isolation at the network layer [16].

Deploying HARNESS to Grid’5000 requires an almost fully au-
tomated approach. The allocation is ephemeral, so there is an em-
phasis on speed of deployment and a need to dynamically generate
an inventory. The dynamic nature of Grid’5000 means that there is
no single set of static nodes that form the test bed. Rather, develop-
ers must request sets of nodes and other resources from the OAR
batch scheduler. The following commands show an example of how
HARNESS can be deployed on Grid’5000:

% oarsub -t deploy -I \
-l slash_22=1+cluster=1/nodes=3,walltime=4:00:00

% kadeploy3 -f $OAR_NODE_FILE -e ubuntu-x64-1404 -k
% ansible-playbook -i inventories/g5k.sh deploy.yml

The first command (oarsub) requests a reservation of three Grid’5000
nodes, all on the same cluster, with a /22 subnet, for 4 hours. The sec-
ond command (kadeploy3) puts a fresh install of Ubuntu 14.04 on
the reserved nodes. Finally, the third command (ansible-playbook)
deploys the HARNESS cloud to the reserved nodes. The g5k.sh

script, which is passed as an argument, is a shell script that reads
environment variables set by the batch job scheduler to dynamically
generate an inventory based on the user’s reservation.

7. CONCLUSION
In this paper we have described the development and deployment

infrastructure created to support the integration effort of the FP7
HARNESS project. This infrastructure addresses a number of chal-
lenges commonly found in EU research projects that aim to develop
high-quality software intended for distribution and reuse, with a
focus on dissemination activities (such as proof-of-concept demon-
strations and experiments for research papers) rather than following
the imperatives of commercial clients. Currently, the primary de-
ployment targets for HARNESS consist of a static testbed hosted at
Imperial College London and Grid’5000, which presents a larger-
scale but ephemeral environment with direct access to machine
hardware. Future plans for the project include deploying HAR-
NESS to the EGI Federated Cloud, a multi-site cloud computing
infrastructure for research within the European Union [6].

While it is difficult to fully quantify how our DevOps workflow
has affected our development process, and we are only now starting
to collect metrics, we can see a qualitative difference in the way
teams operate as compared to the previous year, before putting in
place automated testing and deployment. In particular, in the be-
ginning of this year considerable changes in the HARNESS cloud
architecture where planned with the introduction of a new API spec-
ification and updated features such as monitoring and feedback,
which required extensive modifications across the whole cloud soft-
ware stack. We found development teams more able to operate
autonomously, while simultaneously being more willing to accept
changes and providing more frequent updates. There also seemed to
be a reduction in communication overhead for making coordinated
changes. The combination of automated testing and deployment
appears to have contributed greatly to improving the speed and
efficiency with which we converge toward the project milestones.

8. ACKNOWLEDGMENTS
This work was supported by the European Union Seventh Frame-

work Programme under Grant agreement number 318521.
Experiments presented in this paper were carried out using the

Grid’5000 testbed, supported by a scientific interest group hosted
by Inria and including CNRS, RENATER and several Universities
as well as other organizations (see https://www.grid5000.fr).

9. REFERENCES
[1] Ansible: DevOps made simple. http://ansible.com.
[2] Buildbot: The continuous integration framework.

http://buildbot.net.
[3] Chef: Automation for web-scale IT. http://chef.io.
[4] ConPaaS Project. http://www.conpaas.eu/.
[5] Docker. http://docker.io.
[6] European grid infrastructure federated cloud.

http://www.egi.eu/infrastructure/cloud/.
[7] FP7 HARNESS project. http://www.harness-project.eu/.
[8] Jenkins: An extensible open source continuous integration

server. http://jenkins-ci.org.
[9] Maxeler Technologies. http://www.maxeler.com.

[10] OpenStack: Open source software for creating private and
public clouds. http://openstack.org.

[11] Puppet Labs. http://puppetlabs.com.
[12] SaltStack. http://saltstack.com.
[13] Vagrant: Development environments made easy.

http://vagrantup.com.
[14] European Commission: Software technologies, the missing

key enabling technology, 2012. http://cordis.europa.eu/
fp7/ict/docs/istag-soft-tech-wgreport2012.pdf.

[15] EPSRC: Software as an infrastructure, 2015.
https://www.epsrc.ac.uk/newsevents/pubs/

software-as-an-infrastructure/.
[16] D. Balouek et al. Adding Virtualization Capabilities to the

Grid’5000 Testbed. In Cloud Computing and Services Science,
volume 367, pages 3–20. 2013.

[17] A. Bubeck et al. Implementing Best Practices for Systems
Integration and Distributed Software Development in Service
Robotics. In IEEE/SICE Inter. Symp. on System Integration
(SII), pages 609–614, Dec 2012.

[18] M. Fowler. Microservices. http:
//martinfowler.com/articles/microservices.html.

[19] D. Groen et al. Software Development Practices in Academia:
A Case Study Comparison. CoRR, abs/1506.05272, 2015.

[20] R. Harrison. How to avoid Puppet dependency nightmares
with defines. http://www.webcitation.org/6a1doDLla.

[21] E. O’Neill et al. Cross resource optimisation of database
functionality across heterogeneous processors. In Proc. IEEE
on Parallel and Dist. Processing with Applications, 2014.

[22] O. Pell et al. Maximum Performance Computing with
Dataflow Engines. In High-Performance Computing Using
FPGAs, pages 747–774. Springer, 2013.

[23] F. Schintke. XtreemFS & Scalaris. Science & Technology,
(6):54 – 55, 2013.

[24] M. G. Xavier et al. Performance Evaluation of
Container-based Virtualization for High Performance
Computing Environments. In Proc. of Euromicro Inter. Conf.
on Parallel, Distributed and Network-Based Processing
(PDP), pages 233–240, 2013.

https://www.grid5000.fr
http://ansible.com
http://buildbot.net
http://chef.io
http://www.conpaas.eu/
http://docker.io
http://www.egi.eu/infrastructure/cloud/
http://www.harness-project.eu/
http://jenkins-ci.org
http://www.maxeler.com
http://openstack.org
http://puppetlabs.com
http://saltstack.com
http://vagrantup.com
http://cordis.europa.eu/fp7/ict/docs/istag-soft-tech-wgreport2012.pdf
http://cordis.europa.eu/fp7/ict/docs/istag-soft-tech-wgreport2012.pdf
https://www.epsrc.ac.uk/newsevents/pubs/software-as-an-infrastructure/
https://www.epsrc.ac.uk/newsevents/pubs/software-as-an-infrastructure/
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://www.webcitation.org/6a1doDLla

	Introduction
	HARNESS Cloud Architecture
	DevOps Workflow
	Reproducible Deployment
	Containerized Services
	Service Orchestration and Configuration
	Virtual Machine Environments

	Automated Testing
	HARNESS Testbeds
	Conclusion
	Acknowledgments
	References

