2 research outputs found

    Methodology for Standby Leakage Power Reduction in Nanometer-Scale CMOS Circuits

    Get PDF
    In nanometer-scale CMOS technology, leakage power has become a major component of the total power dissipation due to the downscaling of threshold voltage and gate oxide thickness. The leakage power consumption has received even more attention by increasing demand for mobile devices. Since mobile devices spend a majority of their time in a standby mode, the leakage power savings in standby state is critical to extend battery lifetime. For this reason, low power has become a major factor in designing CMOS circuits. In this dissertation, we propose a novel transistor reordering methodology for leakage reduction. Unlike previous technique, the proposed method provides exact reordering rules for minimum leakage formation by considering all leakage components. Thus, this method formulates an optimized structure for leakage reduction even in complex CMOS logic gate, and can be used in combination with other leakage reduction techniques to achieve further improvement. We also propose a new standby leakage reduction methodology, leakage-aware body biasing, to overcome the shortcomings of a conventional Reverse Body Biasing (RBB) technique. The RBB technique has been used to reduce subthreshold leakage current. Therefore, this technique works well under subthreshold dominant region even though it has intrinsic structural drawbacks. However, such drawbacks cannot be overlooked anymore since gate leakage has become comparable to subthreshold leakage in nanometer-scale region. In addition, BTBT leakage also increases with technology scaling due to the higher doping concentration applied in each process technology. In these circumstances, the objective of leakage minimization is not a single leakage source but the overall leakage sources. The proposed leakage-aware body biasing technique, unlike conventional RBB technique, considers all major leakage sources to minimize the negative effects of existing body biasing approach. This can be achieved by intelligently applying body bias to appropriate CMOS network based on its status (on-/off-state) with the aid of a pin/transistor reordering technique

    Energy Aware Design and Analysis for Synchronous and Asynchronous Circuits

    Get PDF
    Power dissipation has become a major concern for IC designers. Various low power design techniques have been developed for synchronous circuits. Asynchronous circuits, however. have gained more interests recently due to their benefits in lower noise, easy timing control, etc. But few publications on energy reduction techniques for asynchronous logic are available. Power awareness indicates the ability of the system power to scale with changing conditions and quality requirements. Scalability is an important figure-of-merit since it allows the end user to implement operational policy. just like the user of mobile multimedia equipment needs to select between better quality and longer battery operation time. This dissertation discusses power/energy optimization and performs analysis on both synchronous and asynchronous logic. The major contributions of this dissertation include: 1 ) A 2-Dimensional Pipeline Gating technique for synchronous pipelined circuits to improve their power awareness has been proposed. This technique gates the corresponding clock lines connected to registers in both vertical direction (the data flow direction) and horizontal direction (registers within each pipeline stage) based on current input precision. 2) Two energy reduction techniques, Signal Bypassing & Insertion and Zero Insertion. have been developed for NCL circuits. Both techniques use Nulls to replace redundant Data 0\u27s based on current input precision in order to reduce the switching activity while Signal Bypassing & Insertion is for non-pipelined NCI, circuits and Zero Insertion is for pipelined counterparts. A dynamic active-bit detection scheme is also developed as an expansion. 3) Two energy estimation techniques, Equivalent Inverter Modeling based on Input Mapping in transistor-level and Switching Activity Modeling in gate-level, have been proposed. The former one is for CMOS gates with feedbacks and the latter one is for NCL circuits
    corecore