7 research outputs found

    A Bicriteria Approximation for the Reordering Buffer Problem

    Full text link
    In the reordering buffer problem (RBP), a server is asked to process a sequence of requests lying in a metric space. To process a request the server must move to the corresponding point in the metric. The requests can be processed slightly out of order; in particular, the server has a buffer of capacity k which can store up to k requests as it reads in the sequence. The goal is to reorder the requests in such a manner that the buffer constraint is satisfied and the total travel cost of the server is minimized. The RBP arises in many applications that require scheduling with a limited buffer capacity, such as scheduling a disk arm in storage systems, switching colors in paint shops of a car manufacturing plant, and rendering 3D images in computer graphics. We study the offline version of RBP and develop bicriteria approximations. When the underlying metric is a tree, we obtain a solution of cost no more than 9OPT using a buffer of capacity 4k + 1 where OPT is the cost of an optimal solution with buffer capacity k. Constant factor approximations were known previously only for the uniform metric (Avigdor-Elgrabli et al., 2012). Via randomized tree embeddings, this implies an O(log n) approximation to cost and O(1) approximation to buffer size for general metrics. Previously the best known algorithm for arbitrary metrics by Englert et al. (2007) provided an O(log^2 k log n) approximation without violating the buffer constraint.Comment: 13 page

    Polylogarithmic guarantees for generalized reordering buffer management

    Get PDF
    In the Generalized Reordering Buffer Management Problem (GRBM) a sequence of items located in a metric space arrives online, and has to be processed by a set of k servers moving within the space. In a single step the first b still unprocessed items from the sequence are accessible, and a scheduling strategy has to select an item and a server. Then the chosen item is processed by moving the chosen server to its location. The goal is to process all items while minimizing the total distance travelled by the servers. This problem was introduced in [Chan, Megow, Sitters, van Stee TCS 12] and has been subsequently studied in an online setting by [Azar, Englert, Gamzu, Kidron STACS 14]. The problem is a natural generalization of two very well-studied problems: the k-server problem for b=1 and the Reordering Buffer Management Problem (RBM) for k=1. In this paper we consider the GRBM problem on a uniform metric in the online version. We show how to obtain a competitive ratio of O(log k(log k+loglog b)) for this problem. Our result is a drastic improvement in the dependency on b compared to the previous best bound of O(√b log k), and is asymptotically optimal for constant k, because Ω(log k + loglog b) is a lower bound for GRBM on uniform metrics

    Reordering buffer management with advice

    Full text link
    In the reordering buffer management problem, a sequence of colored items arrives at a service station to be processed. Each color change between two consecutively processed items generates some cost. A reordering buffer of capacity k items can be used to preprocess the input sequence in order to decrease the number of color changes. The goal is to find a scheduling strategy that, using the reordering buffer, minimizes the number of color changes in the given sequence of items. We consider the problem in the setting of online computation with advice. In this model, the color of an item becomes known only at the time when the item enters the reordering buffer. Additionally, together with each item entering the buffer, we get a fixed number of advice bits, which can be seen as information about the future or as information about an optimal solution (or an approximation thereof) for the whole input sequence. We show that for any ε>0 there is a (1+ε)-competitive algorithm for the problem which uses only a constant (depending on ε) number of advice bits per input item. This also immediately implies a (1+ε)-approximation algorithm which has 2O(nlog1/ε) running time (this should be compared to the trivial optimal algorithm which has a running time of kO(n)). We complement the above result by presenting a lower bound of Ω(logk) bits of advice per request for any 1-competitive algorithm
    corecore