6,231 research outputs found

    MISSED: an environment for mixed-signal microsystem testing and diagnosis

    Get PDF
    A tight link between design and test data is proposed for speeding up test-pattern generation and diagnosis during mixed-signal prototype verification. Test requirements are already incorporated at the behavioral level and specified with increased detail at lower hierarchical levels. A strict distinction between generic routines and implementation data makes reuse of software possible. A testability-analysis tool and test and DFT libraries support the designer to guarantee testability. Hierarchical backtrace procedures in combination with an expert system and fault libraries assist the designer during mixed-signal chip debuggin

    Don't Treat the Symptom, Find the Cause! Efficient Artificial-Intelligence Methods for (Interactive) Debugging

    Full text link
    In the modern world, we are permanently using, leveraging, interacting with, and relying upon systems of ever higher sophistication, ranging from our cars, recommender systems in e-commerce, and networks when we go online, to integrated circuits when using our PCs and smartphones, the power grid to ensure our energy supply, security-critical software when accessing our bank accounts, and spreadsheets for financial planning and decision making. The complexity of these systems coupled with our high dependency on them implies both a non-negligible likelihood of system failures, and a high potential that such failures have significant negative effects on our everyday life. For that reason, it is a vital requirement to keep the harm of emerging failures to a minimum, which means minimizing the system downtime as well as the cost of system repair. This is where model-based diagnosis comes into play. Model-based diagnosis is a principled, domain-independent approach that can be generally applied to troubleshoot systems of a wide variety of types, including all the ones mentioned above, and many more. It exploits and orchestrates i.a. techniques for knowledge representation, automated reasoning, heuristic problem solving, intelligent search, optimization, stochastics, statistics, decision making under uncertainty, machine learning, as well as calculus, combinatorics and set theory to detect, localize, and fix faults in abnormally behaving systems. In this thesis, we will give an introduction to the topic of model-based diagnosis, point out the major challenges in the field, and discuss a selection of approaches from our research addressing these issues.Comment: Habilitation Thesi

    Expert system technology

    Get PDF
    The expert system is a computer program which attempts to reproduce the problem-solving behavior of an expert, who is able to view problems from a broad perspective and arrive at conclusions rapidly, using intuition, shortcuts, and analogies to previous situations. Expert systems are a departure from the usual artificial intelligence approach to problem solving. Researchers have traditionally tried to develop general modes of human intelligence that could be applied to many different situations. Expert systems, on the other hand, tend to rely on large quantities of domain specific knowledge, much of it heuristic. The reasoning component of the system is relatively simple and straightforward. For this reason, expert systems are often called knowledge based systems. The report expands on the foregoing. Section 1 discusses the architecture of a typical expert system. Section 2 deals with the characteristics that make a problem a suitable candidate for expert system solution. Section 3 surveys current technology, describing some of the software aids available for expert system development. Section 4 discusses the limitations of the latter. The concluding section makes predictions of future trends
    corecore