3,464 research outputs found

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    High-Performance low-vcc in-order core

    Get PDF
    Power density grows in new technology nodes, thus requiring Vcc to scale especially in mobile platforms where energy is critical. This paper presents a novel approach to decrease Vcc while keeping operating frequency high. Our mechanism is referred to as immediate read after write (IRAW) avoidance. We propose an implementation of the mechanism for an Intel® SilverthorneTM in-order core. Furthermore, we show that our mechanism can be adapted dynamically to provide the highest performance and lowest energy-delay product (EDP) at each Vcc level. Results show that IRAW avoidance increases operating frequency by 57% at 500mV and 99% at 400mV with negligible area and power overhead (below 1%), which translates into large speedups (48% at 500mV and 90% at 400mV) and EDP reductions (0.61 EDP at 500mV and 0.33 at 400mV).Peer ReviewedPostprint (published version
    • …
    corecore