
High-Performance Low-Vcc In-Order Core

Jaume Abella, Pedro Chaparro, Xavier Vera, Javier Carretero, Antonio González
Intel Barcelona Research Center, Intel Labs Barcelona - UPC

jabella@ac.upc.edu, xavier.vera@intel.com,
javier.carretero.casado@intel.com, antonio.gonzalez@intel.com

Abstract

Power density grows in new technology nodes, thus re-
quiring Vcc to scale especially in mobile platforms where
energy is critical.

This paper presents a novel approach to decrease Vcc
while keeping operating frequency high. Our mechanism
is referred to as immediate read after write (IRAW) avoid-
ance. We propose an implementation of the mechanism for
an Intel R© SilverthorneTM in-order core. Furthermore, we
show that our mechanism can be adapted dynamically to
provide the highest performance and lowest energy-delay
product (EDP) at each Vcc level.

Results show that IRAW avoidance increases operat-
ing frequency by 57% at 500mV and 99% at 400mV with
negligible area and power overhead (below 1%), which
translates into large speedups (48% at 500mV and 90% at
400mV) and EDP reductions (0.61 EDP at 500mV and 0.33
at 400mV).

1 Introduction

New CMOS process generations enable smaller transis-
tors, thus increasing integration densities. Extra transistors
in chips are used to increase features and reduce form fac-
tors of portable devices (mobile phones, mobile internet de-
vices, netbooks, etc.). However, those trends reduce drasti-
cally battery lifetime due to extra energy required for new
features and reduced battery size and capacity. Thus, tech-
nology scaling enforces the use of a lower Vcc to keep and
even increase battery life in portable devices.

Those processors in the mobile market segment make an
aggressive use of Dynamic Voltage and Frequency Scaling
(DVFS) techniques to adapt their Vcc and frequency to the
current workload and battery state [10, 24] for the sake of
energy efficiency. Thus, flexible and energy-efficient de-
signs are required to enable high performance at both high
and low Vcc operation.

0
1
2
3
4
5
6
7
8
9

10

700 675 650 625 600 575 550 525 500 475 450 425 400
D

el
ay

 (a
. u

.)
Voltage (mV)

Delay normalized w.r.t. 12 FO4 at 700mV in 45nm

12 FO4 (1 clock phase)
Bitcell write delay
Bitcell read delay
Bitcell write delay + WL activation
Bitline read delay + WL activation

Figure 1. Delay of a clock phase (estimated
as 12 FO4 gates), and write and read delay
for an 8-T SRAM bitcell [19]. WL stands for
wordline

Cycle time is determined by the slowest path in the pro-
cessor. Such critical path is typically part of the logic and its
delay can be modeled accurately as a chain of N fanout-of-4
(FO4) inverters. However, write operations in SRAM arrays
become the most critical path at low Vcc because their la-
tency grows exponentially when Vcc is decreased. We illus-
trate this trend in Figure 1 (further details on the experiment
are provided later).

Bitcell write latency (the main component of write la-
tency) can be somewhat mitigated by process optimization
and bitcell redesign (e.g., using cells other than conven-
tional 6-T [9, 17–19]). However, such techniques come at
some area cost for SRAM blocks. Moreover, even if bitcell
redesign provides write latency reductions, write latency is
still the slowest path at low Vcc levels (e.g., 525mV in our
experiment) and drastical operating frequency reductions
are still required at low Vcc.

To the best of our knowledge this paper presents the first
processor design that enables high operating frequency at
low Vcc by overriding SRAM write delay constraints. Some
state-of-the-art solutions work for particular structures, but
they cannot be applied to all SRAM blocks in a core. This
paper addresses this issue with a flexible solution and its

987-1-4244-5659-8/09/$25.00 ©2009 IEEE

write
wordline

read
wordline

write bitline
(inverted) write

bitline

read bitline
(inverted)

bit
inverted bit

Figure 2. Scheme of an 8-T bitcell [19]

implementation for an Intel R© SilverthorneTM in-order core
that operates at high frequency even at low Vcc. Based on
the observation that write operations can finish properly if
they are interrupted early and given that most of the data
written in SRAM structures are rarely read immediately af-
ter being written, we interrupt write operations before bit-
cells reach a readable state. This way operating frequency
is increased. Those bitcells stabilize and reach a readable
state across several cycles by avoiding conflictive read op-
erations. We refer to our strategy as Immediate Read After
Write (IRAW) avoidance. Infrequent stalls introduced by
IRAW avoidance are largely offset by the performance in-
crease caused by the operating frequency boost.

The rest of the paper is organized as follows. Section 2
presents a detailed analysis of the impact of low Vcc in
delay and existing solutions. Section 3 introduces IRAW
avoidance strategies. Section 4 describes the implementa-
tion of the IRAW avoidance method for the main blocks
of an Intel R© SilverthorneTM core. Results are presented in
Section 5. Section 6 reviews some related work. Finally,
Section 7 summarizes this paper.

2 Low Vcc Operation Overview

This section describes the impact of low Vcc operation
in cycle time and reviews existing solutions to increase op-
erating frequency at low Vcc operation.

2.1 Impact of Vcc in the Cycle Time

Effective bitcell write operations are performed during
half of the clock cycle (a clock phase). During the first
phase of the cycle decoding and bitline set up are per-
formed. During the second clock phase some time is de-
voted to activate the wordline and most of the time is used
to effectively update the bitcell. In Figure 1 we show the
latency for bitcell write and read operations with and with-
out considering the wordline activation time, as well as the
latency for a chain of 12 FO4 gates (typical latency for com-

binational circuits during a single clock phase). Read and
write delays depicted in Figure 1 correspond to an 8-T bit-
cell like the one shown in Figure 2 with double-bitline write
ports and single-bitline read ports. We have chosen such
cell because it is the one used for the SRAM blocks of the
Intel R© SilverthorneTM (including register files and cache
memories). Vcc and operating frequency trends are based
on electrical simulations for the Vcc range [700mV,400mV]
in an Intel R© simulator. The process technology used to
gather such data is 45nm considering process variations
in the geometry of the transistors and the threshold volt-
age. The level of process variations considered is 6σ, which
is a reasonable margin to ensure fault-free operation (only
one critical path per billion would not fit the cycle time).
Threshold voltage (Vth) has been scaled based on trends for
super-Vth and near-Vth operation [8]. Any delay is mea-
sured until the observed signal completes 80% of its swing
(e.g., Vcc is 600mV and the signal falls below 120mV or
raises above 480mV). Note that read and write delays are
shown with and without wordline activation delay. Such de-
lay depends on the particular characteristics of the SRAM
array (mainly the number of bits per wordline). Our experi-
ments correspond to an array with 1,024 entries, 32 bits per
entry and 8 bits attached to each wordline (wordlines have
been partitioned into 8 bit groups to optimize their delay).

As shown in the figure, most of the delays grow al-
most linearly, however this is not the case for write oper-
ations whose delay grows exponentially. Write latency is
the most critical path below 525mV if wordline activation is
neglected. If we consider wordline activation latency then
write operations become the most critical path at 600mV.
For instance, frequency must be decreased down to 77% of
the frequency allowed by the logic at 550mV due to write
delay constraints, and down to only 24% at 450mV. Word-
line activation delay is low and its slope resembles that of
the 12 FO4 chain. Read delay remains below that of the
12 FO4 inverters even if wordline activation delay is con-
sidered (thick dotted lines) because 8-T cells allow sizing
properly those transistors feeding the read bitline without
harming write delay.

We can conclude that bitcell write delay is the most crit-
ical path at low Vcc and impacts cycle time dramatically.

2.2 State-of-the-Art on Overriding
SRAM Write Delay

Some techniques can be used to operate at a higher fre-
quency than that dictated by write delay (i.e., up to the fre-
quency dictated by the chain of FO4 inverters). Based on
the fact that delay for each bitcell differs due to process
variations, an alternative may consist of reducing the num-
ber of σ considered to determine the cycle time (e.g., using
4σ instead of 6σ). Such a solution will increase the num-

Works for Adapts to Hw. Large Hard
all SRAM multiple ovh. IPC to

blocks Vcc impact test
Faulty NO YES LOW YES YES
Bits (costly)

Extra NO NO HIGH YES NO
Bypass

Table 1. Characteristics of state-of-the-art
techniques to override SRAM write delay

ber of faulty bits and hence, faulty bits (or groups of bits)
should be disabled. This technique has been proposed for
cache memories [1, 22, 26]. We refer to it as Faulty Bits. A
different alternative consists of increasing frequency above
the one required to perform write operations and pipelining
write operations across more than one cycle. If cycle time
has been shortened, bitcell update does not finish during a
single clock phase and it must last one or more cycles. We
refer to this approach as Extra Bypass. Table 1 describes
both approaches based on the following characteristics:

• Work for all SRAM blocks. Faulty Bits cannot be
used for those structures that require all entries to oper-
ate as for instance the register file for an in-order core.
Extra Bypass requires knowledge of whether data in
the bypass will be used, which is not be feasible for
cache-like structures where addresses may be known
too late.

• Adapt to multiple Vcc. Faulty Bits works for multiple
Vcc levels if fault maps can be updated properly. How-
ever, either SRAM blocks must be tested at every Vcc
level change or extra storage is required for as many
maps as Vcc levels allowed. Extra Bypass is not flexi-
ble because bypasses must be in place (and their costs
paid) at any Vcc level.

• Hardware overhead. Faulty Bits require fault maps
and rather small logic. The cost of the fault maps
may not be negligible. Extra Bypass has prohibitive
costs [3, 4, 20] due to the extra wires and latches (up
to 128 or 256-bit latches for SIMD data). Moreover,
those bypasses affect critical paths.

• Large IPC impact. Faulty Bits disables faulty stor-
age, and hence, miss rates increase for caches leading
to lower performance. Similary, Extra Bypass extends
write operations across multiple cycles, causing signif-
icant write port contention. Extra write ports can be set
up, but their cost in power, area and delay is huge.

• Hard to test. Faulty Bits introduces indeterminism
during post-silicon testing. This issue is especially rel-
evant in multi-cores where testing costs are reduced by

BP
IL0

ITLB

RF IQ

UL1

DL0

DTLB ALUs

RSB

FB

WCB/EB

Figure 3. Schematic of the main blocks of an
Intel R© SilverthorneTM Microarchitecture [6]

running the same patterns in several cores and com-
paring their outputs periodically. Whenever a pair of
cores does not provide the same outputs simultane-
ously there is no way to identify whether the discrep-
ancy is due to an error or due to performance variations
introduced by disabled hardware in one of the cores.
Extra Bypass does not introduce new testing issues.

Summing up, mechanisms are required to increase oper-
ating frequency at low Vcc for all SRAM blocks, providing
flexibility to the different Vcc levels, with reduced hardware
overhead and IPC degradation, and without affecting post-
silicon testing.

3 Strategies for IRAW Avoidance

This section presents our strategies to increase operat-
ing frequency at low Vcc beyond the frequency determined
by write delay. First, we classify SRAM structures of an
in-order core, and then, we present the IRAW avoidance
strategy for each category.

3.1 In-Order Core SRAM Structures

The processor we consider in this work is the Intel R©
SilverthorneTM [6] although our implementation works for
any in-order core. The schematic of the main blocks of this
core is depicted in Figure 3. As shown, we consider first
level data cache (DL0), first level instruction cache (IL0)
and second level cache (UL1) memories, data and instruc-
tions TLBs (DTLB and ITLB respectively), joint write com-
bining and eviction buffers (WCB/EB), fill buffers (FB),
instruction queue (IQ), register file (RF), branch predictor
(BP) and return stack buffers (RSB).

In order to present strategies and implementations for
the different blocks of the core, we classify them into

a) Baseline bitcell write delay

b) IRAW bitcell write delay

bitcell write
delay

write operation is
interrupted at this point

write
ends

1st cycle: write port is used 2nd cycle: bitcells stabilize

address decoded and
bitlines ready

address decoded
and bitlines ready

slack

slack

Figure 4. Example of timing of a conventional
bitcell write operation (top plot) and an inter-
rupted one (bottom plot)

the following categories: (1) Register file; (2) Instruction
queue; (3) Unfrequently written cache-like blocks: IL0,
UL1, DTLB, ITLB, WCB/EB and FB; (4) Frequently writ-
ten cache-like blocks: DL0; and (5) Prediction-only cache-
like blocks: BP and RSB. For this last type of blocks it is
not relevant whether they are written often or not.

3.2 IRAW Avoidance Strategies

We propose a set of IRAW avoidance strategies, which
rely on the fact that write operations can be interrupted be-
fore bitcells reach a readable state by disabling wordlines.
Figure 4 illustrates how cycle time can be shortened. The
top plot shows the baseline case where the cycle lasts un-
til write operations complete. At low Vcc bitcell write de-
lay is the cycle time limiter and therefore, there is large
slack during the first clock phase to decode the address and
prepare bitlines. However, bitcell write delay requires the
full second clock phase. The bottom plot shows our ap-
proach where write operations are interrupted early by de-
activating wordlines. Some extra time is required to reach
a readable state (almost a full clock phase in the exam-
ple), and the total bitcell update delay (effective bitcell write
plus stabilization) may increase with respect to the baseline
case because bitcells must complete their flip by their own
(there is no further help from the bitlines). However, as we
show later, performance gains due to operating frequency
increase largely offset performance decrease caused by de-
laying by one cycle data consumers.

Write interruption does not affect correctness as long as
some properties are guaranteed: (i) bitcells written have
their wordlines activated during some time, (ii) bitlines
reach the proper Vcc level before wordlines are deactivated
and keep such level until wordlines are deactivated, and
(iii) bitcells flip their contents to some extent before the
wordline is deactivated. Although bitcells may not be read-
able when wordlines are deactivated (e.g., internal nodes

IRAW-protected
block

Check for
conflicts

Conflict?

Figure 5. Example where reads of conflicting
locations are not avoided but repaired

have not completed 80% of their swing), their contents have
flipped enough so that they will stabilize and reach a read-
able state.

By interrupting write operations in this way we achieve
the following: cycle time can be shortened (and operating
frequency raised) and write ports are used only during one
cycle so no new resource conflicts are caused. A mecha-
nism is required to avoid read operations on not-yet stabi-
lized data because otherwise data retrieved could be wrong
and bitcell contents could be destroyed. Such mechanism
must delay conflicting read operations by one or few cy-
cles. However, new write operations can start every cycle
because the write port is used during a single cycle.

Mechanisms to avoid IRAW depend on the type of struc-
ture. The strategy to follow for each type of structure is as
follows:

• Register file. Source registers are known before in-
structions are issued. Such information can be used
to avoid issuing any instruction one of whose sources
would be read when it is stabilizing in the register file.
Note that given that back-to-back execution is still al-
lowed because values are obtained from the existing
bypass network if they are consumed immediately.

• Instruction queue. Instructions are allocated and is-
sued in-order in in-order cores. Thus, we only need
to guarantee that instructions are not issued right after
they have been allocated. By doing so we avoid any
IRAW in the IQ.

• Unfrequently written cache-like blocks. Given that
these blocks are written rarely, the simplest solution
consists of delaying read accesses until contents have
stabilized because few stalls will arise.

• Frequently written cache-like blocks. Locations to
be read may be obtained immediately before the ac-
cess must be performed. Thus, it is very unlikely we
can avoid IRAW without delaying many read opera-
tions that would not access not-yet stabilized data but

whose address is not known in advance. Similarly, de-
laying read operations until all contents have stabilized
introduces many stalls because such blocks are written
frequently. Thus, we propose tracking those few values
not-yet stabilized and checking a posteriori or in par-
allel whether an IRAW happened. If that is the case,
then simple recovery actions can be taken. Figure 5
depicts this mechanism.

• Prediction-only cache-like blocks. The same solu-
tion employed for frequently written cache-like blocks
would work for prediction-only blocks. However, if
determinism is not required, we can simply ignore
IRAW violations because those violations may alter
predictions, and hence performance, but not correct-
ness.

4 IRAW Avoidance Implementation

This section describes particular implementations of the
IRAW avoidance strategies for the main blocks of the in-
order core studied. Beyond particular implementations, the
purpose of this section is showing that our strategies can be
applied to any SRAM block in an in-order core.

4.1 Implementation for Register Files

This section presents an implementation of our IRAW
avoidance method for the RF. By introducing minor modi-
fications in the issue logic we avoid issuing instructions in
those cycles when they would consume those not yet sta-
bilized registers. Since instructions causing an IRAW are
infrequent (13.2% of the total instructions), the issuance of
those instructions is delayed and thus, performance degra-
dation is low. Moreover, the IRAW avoidance mechanism
can be easily deactivated during high Vcc operation to pre-
vent any performance degradation.

This section describes the issue logic for in-order cores
and the modifications required in the issue logic to imple-
ment the IRAW avoidance method.

4.1.1 Readiness Control Logic in the Instruction
Queue

Typically, readiness of registers is tracked by means of a
centralized scoreboard. Each entry in the scoreboard is de-
voted to a logical register, as shown in Figure 6. Each entry
consists of a shift register. The purpose of the shift register
is dealing with delayed wake-up. The most significant bit
of the shift register indicates whether the logical register is
ready. For instance, if the shift register has 5 bits, an in-
struction whose latency is 3 cycles will set the shift register
of its destination logical register to 00011. Shift registers

register
tag

number of
registers

register ready?

shift left

Figure 6. Readiness control logic of a register
in the scoreboard of an in-order processor

are shifted every cycle one position keeping the same value
in the least significant bit. This way, the shift register will
store 00111 after one cycle, 01111 after two cycles, and
11111 after three cycles indicating that any consumer does
not need to wait anymore for this logical register because
the most significant bit is 1. In general, shift registers of
B bits can deal with the delayed wakeup of any instruction
whose latency is up to B − 1 cycles. Those instructions
update the shift register of its destination logical register as
soon as they issue.

In our example only those instructions whose latency is
greater than 4 cycles will need an additional mechanism to
indicate readiness of their destination logical registers. The
destination logical register of a long-latency instruction will
keep its shift register set to 00000 when such instruction is
issued. Long-latency instructions must be tracked in a sep-
arate scoreboard (e.g., FP division) or an event will be gen-
erated when they finish their execution (e.g., a load miss).
At some point in time the shift register of the destination
logical register is updated. Typically, it is updated when the
value becomes available (the shift register is updated as if
the producer was a single cycle instruction, 11111 in the
example), or when the value is expected to be available in
less than B cycles (the shift register is updated properly to
indicate that the logical register will be ready in few cycles).

4.1.2 Modifications in the Control Logic

The purpose of our mechanism consists of delaying the is-
suance of those instructions causing an IRAW violation.
We will use the example in Figure 7 to describe the IRAW
avoidance mechanism. The example corresponds to a
pipeline with 1 bypass level where IRAW must be avoided
for 1 cycle (N=1). As shown in Figure 7, right after the
value is produced there is no conflict with the consumers
because such value is available through the bypass network.
This is the case for Consumer 1, which obtains the value
through the bypass network in place. Conversely, Consumer
2 would read the value from the register file right after it has

Producer

Consumer 1

Consumer 2

Consumer 3

issue steer exec write stabil

issue exec

issue exec

issue exec

read

steer read

steer read

steer read

bypass

Figure 7. Example of consumers obtaining in-
puts from their producer in different cycles

Baseline

IRAW avoidance

00011 00111 01111 11111 11111

0001011

i+2
11111

i i+1 i+3 i+4 i+5

0010111 0101111 1011111 1111111 0111111

Figure 8. Ready vector for an input operand.
Bold values indicate that the operand is
ready

been written. In order to enable low Vcc operation we must
prevent instructions from reading values immediately after
they have been written, which is the case of Consumer 2 in
the example. Finally, from Consumer 3 onwards there is no
conflict because the register has stabilized.

In order to avoid IRAW violations we delay the issue
time of conflictive instructions. Our proposal is based on
extending the shift registers in the scoreboard with few more
bits. In particular, the number of extra bits required corre-
sponds to the number of bypass levels (1 bypass level in our
example) plus the number of cycles required for the bubble
(1 cycle in our example) to avoid reading values in conflict-
ing cycles (total of 2 bits in the example in Figure 7). When-
ever the producer instruction is issued, the shift register is
initialized as follows from left to right: (I) as many zeros
as cycles takes the producer to execute (like in the baseline
case), (II) as many ones as bypass levels are available, (III)
as many zeros as cycles we want to delay read operations
(N), and (IV) as many ones as needed to fill the remaining
bits (like in the baseline case).

As shown, the only difference in the shift register be-
tween our proposal and the baseline is the fact that we in-
clude the bits described in (II) and (III). Note that such bits
are set automatically like the rest of the bits of the shift reg-
ister because both the number of bypass levels (case II) and
the size of the bubble (case III) have been set at design time.
In our example in Figure 6 and assuming one level of bypass
in place, a 3-cycle instruction will initialize the shift register
of its destination logical register with 0001011 because the
producer takes 3 cycles to execute (000), there is 1 bypass
level (1), the bubble is 1 cycle (0), and after that the value is

always available (11). As shown in Figure 8, our approach
prevents consumers to issue in the cycle i + 4 when they
would read the operand from the register file immediately
after it has been written.

The proposed mechanism requires rather modest hard-
ware overhead and does not need expensive mechanisms to
detect/reissue wrongly issued instructions because instruc-
tions are not allowed to issue in conflicting cycles. This is
particularly important in in-order processors because such
kind of mechanisms are not in place. Other approaches per-
form similar modifications in the shift registers of the is-
sue logic to simplify bypass networks and use incomplete
networks [3]. Since the modifications required by both ap-
proaches, our IRAW avoidance mechanism for the regis-
ter file and the one based on incomplete bypass networks,
are pretty similar, they can be combined sharing the over-
heads in a synergistic manner. Note that incomplete net-
works [3] cannot increase operating frequency by them-
selves, whereas our technique based on interrupting write
operations early enables such operating frequency boost.

4.1.3 Multiple Vcc Operation

Our IRAW avoidance mechanism must be reconfigured dy-
namically to maximize performance at any Vcc level. Thus,
the number of IRAW cycles required must be updated ac-
cording with the Vcc level when it changes. The way to
adapt our IRAW avoidance mechanism to the different sce-
narios is fairly simple since it is just a matter of setting the
bits of the shift registers to the right value. For the sake of
clarity we illustrate this explanation with the example of the
3-cycle instruction in a processor with one level of bypass
and shift registers considering up to 4-cycles instructions.
For the different Vcc levels scoreboard entries are initial-
ized as follows:

• 575mV or lower. The shift register is set to 0001011.
The zeros in the fifth position corresponds to the cycle
when the register is stabilizing.

• 600mV or higher. The shift register is set to 0001111.
No extra cycle for stabilization is required and hence,
IRAW avoidance is deactivated by setting properly the
shift register.

4.2 Implementation for Instruction
Queues

Once instructions are decoded, they are allocated to the
IQ where they remain until they are issued. The IQ of an
in-order core considers only the oldest instructions for is-
suance. For instance, Intel R© SilverthorneTM [6] considers
the 2 oldest instructions. To simplify the design of the IQ,
those entries are read every cycle independently of whether
they contain ready instructions or even they are valid.

tail

a - b

head ‘1’

5

6

5

a b

6

5

ICI = 2 N

2

‘0’

3

2

a + b a b

3

a >= b? a b

1

stall issue?
1

1

Figure 9. Logic to avoid IRAW in the IQ for a
Intel R© SilverthorneTM Microarchitecture [6]

The number of instructions considered for issuance is
referred to as ICI in the rest of the section. Instructions
are allocated to the IQ at a given rate of AI (allocated in-
structions) per cycle. The number of cycles required by the
instructions to stabilize after they have been written is N
(typically 1 cycle). Based on these parameters, ICI , AI
and N , our implementation to avoid any read from not-yet
stabilized entries of the IQ is based on allowing issuance of
instructions if and only if the following condition holds:

occupancy ≥ ICI + AI · N (1)

Occupancy stands for the number of instructions in the
IQ, which is obtained substracting the tail and the head.

As shown, our mechanism allows issuance if there are
at least ICI + AI · N instructions in the IQ, thus ensuring
that even if there are AI · N not-yet stabilized instructions
in the IQ (the maximum number of them), the ICI oldest
instructions have stabilized. However, some performance
may be lost because it may happen that there are at least
ICI stabilized instructions and issuance is not allowed. As
shown later, performance impact is low.

The logic required to implement the mechanism is de-
picted in Figure 9. The leftmost part of the plot shows how
to compute the occupancy of the IQ, whereas the rightmost
part shows how to compute the occupancy threshold. In or-
der to obtain the occupancy, we increase the tail by IQsize
(32 in our particular implementation), which is done by ap-
pending a ’1’ to the left of the tail. Then, we discard the
uppermost bit of the substraction to compute the modulus
operation. Appending a ’0’ to the right of N corresponds
to multiplying N by AI because AI is 2 in our particular
implementation. The stall issue? signal is set to ’0’ only
when write operations fit into a single cycle, and therefore,

the IRAW avoidance mechanism must be disabled. Note
that the occupancy threshold is recomputed only at each Vcc
level change because it is the only time when N is changed.
As shown in the picture, whenever Vcc is changed, only N
and stall issue? signal must be updated to fit the best con-
figuration of the IQ.

Whenever the pipeline must empty (e.g., due to an ex-
ception), AI · N NOOP instructions are injected in the IQ
to ensure all instructions are issued.

4.3 Implementation for Unfrequently
Written Cache-like Blocks

Cache memories have limited capacity and associativ-
ity, and hence, some misses may happen. Whenever a miss
happens some contents must be replaced. Since write op-
erations may need several cycles to complete, any access to
cache during those cycles may destroy the contents of the
recently filled entry. Contents may be destroyed even if the
contents requested correspond to a different entry because
of the particular implementation of some caches. In gen-
eral, whenever we access a given address in a set-associative
cache, all entries in the corresponding set are accessed si-
multaneously to reduce latency. Should an entry in such set
be stabilizing, its contents and tag may be destroyed even if
its address does not match the address of the on-going cache
access.

Given that cache misses are infrequent in most cache
memories (e.g., IL0, UL1, DTLB, ITLB), the solution we
adopt is fairly simple: in case of a fill we stall any access
to cache. Whenever the corresponding entry is filled, fur-
ther accesses are not allowed during the number of cycles
required to stabilize. Typically, preventing further accesses
during some cycles is as easy as keeping the ports busy to
prevent the port arbiter from issuing new accesses.

The same principle can be applied to the WCB/EB
and the FB, which deal with data comunicated between
DL0/IL0 and UL1.

Reconfiguring the mechanism to stall accesses a differ-
ent number of cycles depending on the current Vcc level is
fairly simple. Ports must be stalled during a number of cy-
cles indicated by a counter, whose initial value is updated
whenever the Vcc level is changed. Note that the overhead
of such counters is negligible given the fact that they may
need to work with small values (as shown later, 1 or 2 bits
suffice).

4.4 Implementation for Frequently Writ-
ten Cache-like Blocks

The only frequently written cache-like block in the in-
order core considered is DL0. Similarly to the other cache-
like structures, DL0 is written on cache line fills, which

Load accesses
DL0 and
STable

No match in
STable

DL0 provides
data

match? Only set match
in STable

DL0 provides
data

Full match in
STable

STable
provides data

Stall further
cache

accesses

Repeat store operations
from the oldest matching

entry onwards

STable is updated as if
they were normal store

instructions

Figure 10. Actions taken for load instructions

are unfrequent. The way to avoid IRAW in this scenario
is the same as for the unfrequently written cache-like struc-
tures: stalling further accesses while write operation fin-
ishes. However, DL0 is also modified by store instruc-
tions, which are much more frequent than cache misses, and
therefore, simply stalling cache accesses for few cycles after
store instructions access DL0 would cause a significant per-
formance drop. Thus, we have devised a particular mecha-
nism for DL0 caches to manage store operations, which can
be used for any other frequently written cache-like block.

Our mechanism requires a table (Store Table or STable
for short). Such table tracks the address and data stored in
DL0 by any access different to cache line fills. For instance,
if only one store instruction can commit per cycle and write
operations require 2 cycles to stabilize, the STable has 2 en-
tries. Each entry holds a valid bit, a memory address and
space for the maximum data size that can be stored. The
Stable is implemented by means of latch cells to guarantee
that it can operate in a single cycle at low Vcc. The STa-
ble is updated as follows: Every cycle as many entries as
store instructions can commit are replaced with address and
data of those stores writing in cache in the current cycle (if
any). If new store instructions do not exist, the correspond-
ing entries are simply invalidated. Entries are selected in a
round-robin fashion in such a way that those entries corre-
sponding to store instructions that have just stabilized are
the ones replaced.

Load instructions access both the DL0 and STable in par-
allel, and two different situations may arise (see Figure 10):

• Load address does not match any address of any valid
entry in STable (this is the most common case). Further
actions are not required.

• Load address matches either at least one address or
only the set of valid entries in STable. Full ad-
dress matches correspond to load instructions reading
data that has been recently stored, whereas set-only
matches correspond to load instructions reading some
data located in the same set as some recently stored
data. Since all cache lines in a set of a set-associative

DL0 cache are read simultaneously to reduce latency,
not-yet stabilized data can be read and destroyed even
if such data are not requested by the load instruction. If
load address matches the full address, the STable pro-
vides data to the load instruction. Otherwise, DL0 pro-
vides data. Then, further accesses to cache are stalled,
and store instructions in the STable are repeated from
the oldest matching entry onwards to restore correct
state. Those repeated store actions further update STa-
ble to keep it consistent. Note that partial and full ad-
dress matches are very unlikely because they only arise
when a load instruction is issued right after a store in-
struction accessing the same cache set.

Store instructions only update STable at commit time,
but they do not cause any other issue because they simply
read tags, which are stabilized for sure (no store instruc-
tions could modify tags), and write data. Even if the data
in the updated location were still stabilizing, correctness is
guaranteed because data are not read but updated.

Reconfiguring the mechanism to the current Vcc level is
fairly simple. The STable must have the size required by the
largest number of IRAW cycles allowed. The Vcc controller
sets the number of entries that must be checked (as many
as IRAW cycles for the current Vcc level). The remaining
entries are disabled.

As explained in Section 2 alternative mechanisms based
on trading off frequency for faulty bits can be used for this
type of blocks [1, 22, 26]. However, it is unclear how to
reconfigure those approaches for multiple Vcc levels and
how to deal with undeterminism during testing. Moreover,
there is some performance loss due to extra cache misses.
Note that our approach for the DL0 causes small perfor-
mance degradation (0.3% as shown later). Nevertheless,
both IRAW avoidance and allowing faulty bits can be com-
bined to further increase DL0 operating frequency if re-
quired.

4.5 Implementation for Prediction-only
Cache-like Blocks

Some blocks such as the BP and RSB hold predictions,
which can be wrong. Thus, we may neglect IRAW effects
and allow read operations to access freely these structures
even if they access not-yet stabilized entries, because cor-
rectness is not affected. In the case of the RSB, it is writ-
ten whenever a function call is performed, and read when
returning from such function. Therefore, only if call and
return happen within a very short number of cycles (e.g.,
between 1 and 2 cycles) the predicted return address could
be corrupted. However, we did not find any short function
meeting those conditions. Similarly, a BP entry is updated
on every branch execution and read on every branch pre-
diction. Since the number of entries in the BP is large and

only those entries whose uppermost bit is flipped could be
corrupted, having a conflict in few cycles is extremely un-
likely (we observed a negligible 0.0017% average potential
extra misprediction rate). Overall, no changes are required
to keep the BP and the RSB working properly at low Vcc
levels.

The only issue related to those errors in the BP and RSB
is the fact that they introduce undeterminism in execution,
which is detrimental for testing. For instance, if two cores
in a multi-core are tested simultaneously to compare their
progress, undeterminism in the BP and RSB could make
both cores to progress differently, and therefore, their state
could not be compared at a given cycle. If determinism is
mandatory, the RSB should be stalled after a call instruc-
tion, which is very unlikely to delay any instruction. Sim-
ilarly, the BP should incorporate some hardware to track
recent updates as it is the case for the DL0.

5 Evaluation

This section evaluates our in-order core with our IRAW
avoidance approach in place. We introduce the evaluation
framework and present some results on performance, en-
ergy and area impact for our technique. The IRAW avoid-
ance mechanism is compared against the scenarios where
frequency is scaled down to allow write operations to hap-
pen in a single cycle.

5.1 Evaluation Framework

Performance results have been collected from trace-
driven Intel R© production simulators. Our workload con-
sists of 531 traces of 10 million consecutive instructions
each, which were obtained from different wide variety of
programs (Spec2006, Spec2000, kernels, multimedia, of-
fice, server, workstation, etc.).

Leakage for the whole processor has been set to 10% of
the total energy consumption at 600mV, which is consis-
tent with the trends shown in [8]. Area overhead has been
estimated based on the size of the extra bits required to im-
plement our IRAW avoidance scheme assuming latch-size
bits [16, 23]. Based on the fact that the extra hardware is
rather small (below 0.1% as shown later), power overhead
has been estimated simply assuming a pessimistic 20X ac-
tivity factor for the extra hardware.

5.2 Performance Impact

Figure 11 (a) (squares) shows that cycle time grows
quickly as Vcc decreases due to write delay increase. Note
that differently to Figure 1 we depict cycle time (24 FO4
full clock) instead of a clock phase (12 FO4). For instance,
cycle time almost doubles at 500mV with respect to the

0
5

10
15
20
25
30
35
40
45
50

70
0

67
5

65
0

62
5

60
0

57
5

55
0

52
5

50
0

47
5

45
0

42
5

40
0

D
el

ay
 (a

. u
.)

Voltage (mV)

Delay normalized w.r.t. 24 FO4 at 700mV

24 FO4
Baseline write delay
IRAW cycle time

1 8

2,0

IRAW Avoidance Speedup

Frequency increase
Performance gains

(a)

(b)

0
5

10
15
20
25
30
35
40
45
50

70
0

67
5

65
0

62
5

60
0

57
5

55
0

52
5

50
0

47
5

45
0

42
5

40
0

D
el

ay
 (a

. u
.)

Voltage (mV)

Delay normalized w.r.t. 24 FO4 at 700mV

24 FO4
Baseline write delay
IRAW cycle time

0,8

1,0

1,2

1,4

1,6

1,8

2,0

70
0

67
5

65
0

62
5

60
0

57
5

55
0

52
5

50
0

47
5

45
0

42
5

40
0

Sp
ee

du
p

(a
. u

.)

Voltage (mV)

IRAW Avoidance Speedup

Frequency increase
Performance gains

(a)

(b)

Figure 11. (a) Normalized Cycle time and (b)
frequency and performance gains w.r.t. the
baseline

case where the cycle time is not constrained by write oper-
ations. Conversely, IRAW avoidance enables much higher
operating frequency (e.g., 57% increase at 500mV and up to
99%) as shown in Figure 11 (b). Such operating frequency
boost leads to a significant performance increase (e.g., 48%
at 500mV and up to 90%) as depicted in Figure 11 (b).

In our experiments IRAW avoidance must be deactivated
above 600mV and one stabilization cycle suffices below
600mV. As explained before, IRAW avoidance works for
different number of IRAW cycles and can be reconfigured
dynamically. Thus, our mechanism would work also for dif-
ferent technology nodes or Vcc ranges where the number of
IRAW cycles was larger.

Performance increase is slightly lower than frequency
raise because (i) off-chip memory latency remains constant
and (ii) our IRAW avoidance mechanism introduces some
performance degradation due to those stalls caused in the
different structures. Performance degradation due to stalls
ranges between 8% and 10% at different Vcc levels. Such
performance degradation is mostly caused by issue stalls
required by the IRAW avoidance mechanism in the register
file. For instance, performance drop at 575mV is 8.86%
and distributes as follows: 8.52% due to issue stalls re-

0

0,2

0,4

0,6

0,8

1

1,2
70

0

67
5

65
0

62
5

60
0

57
5

55
0

52
5

50
0

47
5

45
0

42
5

40
0

a.
 u

.

Voltage (mV)

IRAW avoidance energy, delay and energy-delay

Delay
Energy
Energy x Delay

Figure 12. Energy, delay and EDP

quired to avoid IRAW in the register file, 0.30% due to DL0
IRAW avoidance, and the remaining 0.04% due to IRAW
avoidance in the remaining blocks. Due to this overhead
IRAW avoidance is not used at 600mV because operating
frequency could be raised by a modest 1%, which would
be largely offset by the stalls caused to avoid IRAW vio-
lations. Note that the compiler could help removing some
of the register file induced stalls by scheduling instructions
properly. However, such compiler optimizations are out of
the scope of this paper.

Register file delays the issuance of instructions relatively
often. Those instructions are delayed because they would
read not-yet stabilized values otherwise. This is so because
issuing instructions in order implies that most of them are
critical in the overall execution time, and thus, even if stalls
are not very frequent, any delay in the issue stage is very
likely to impact performance. As stated before, 13.2% of
the instructions are delayed by one cycle to avoid IRAW
violations, and such stalls cause a performance degrada-
tion between 8% and 10%. Our implementation of IRAW
avoidance for the DL0 degrades performance to some extent
mainly due to those stalls required after a cache line fill.

5.3 Power and Area Impact

Energy and area overheads for the extra hardware re-
quired are neglibible (below 1% extra energy and 0.03%
extra area) despite our pessimistic assumptions.

Results in terms of energy, delay and energy-delay prod-
uct for the IRAW avoidance scheme and the realistic base-
line are compared in Figure 12. All parameters are com-
pared at each Vcc level. IRAW is slightly worse at high
Vcc (between 700mV and 575mV) because its energy con-
sumption is almost 1% higher than that of the baseline. As
stated before such overhead is probably too pessimistic. De-
lay remains the same in the 700mV - 575mV voltage range.
However, as Vcc decreases, energy and delay for the IRAW
avoidance scheme grow much more slowly than those of
the baseline. Thus, IRAW avoidance provides lower delay,
energy and energy-delay product (EDP for short) than the

baseline. For instance, the relative EDP of IRAW avoid-
ance with respect to the baseline is as low as 0.61 at 500mV
and 0.41 at 450mV. Note that energy gains of IRAW avoid-
ance with respect to the baseline come from the fact that
execution time, and thus leakage, are lower for our IRAW
avoidance approach. Leakage per time unit grows around
10% per 25mV decrease whereas dynamic energy depends
quadratically on Vcc, which is consistent with the Vcc levels
considered [8]. Thus, at lower Vcc leakage has higher con-
tribution to the total energy. For instance, if we assume 5J
energy consumption at 450mV and the cycle time was not
constrained by write delay, 1.24J would correspond to leak-
age. However, write delay decreases operating frequency in
the baseline case, and therefore, it would spend 8.50J (4.74J
due to leakage). Conversely, IRAW avoidance increases
performance and hence, shortens execution time leading to
lower energy: 6.40J (2.64J due to leakage) to perform the
same task.

Recalling Table 1 we can conclude that IRAW avoidance
enables higher operating frequency, works for all SRAM
blocks of an Intel R© SilverthorneTM core, adapts to multiple
Vcc levels, its hardware overhead is small, does not intro-
duce new testing issues and IPC degradation is low.

6 Related Work

Reducing the latency of the SRAM arrays has been a
concern in the last years. This matter is especially im-
portant at low Vcc operation, where SRAM write delay
grows exponentially. Several approaches have addressed
this issue for register files from the microarchitecture stand-
point by reducing the size and number of ports [14, 21, 25],
which is also achieved indirectly with clustered microarchi-
tectures [5, 28]. Multiple-banked designs also reduce read
and write delay in register files [2, 7, 21, 25, 28] and cache
memories [11], as well as multi-level register files [2,4] and
cache memories [15]. However, even if those techniques are
in place, Vcc scales only to some extent for register files and
caches, and mechanisms as the IRAW avoidance proposed
in this paper are needed for the SRAM blocks.

Techniques for low Vcc operation in SRAM structures
have been proposed in the past. The drowsy cache allows
retaining contents at a very low Vcc [12, 13, 27]. When-
ever some data must be accessed the Vcc is raised in the
proper bank. This technique saves power, but does not re-
duce SRAM write delay.

Our approach is orthogonal to all techniques above and
can be easily combined with any of them. Moreover, our
approach is not constrained to few blocks. Instead, IRAW
avoidance can be applied to all SRAM blocks of an in-order
core.

7 Conclusions

Lower Vcc is required due to energy constraints in the
mobile market segment. However, decreasing Vcc increases
SRAM write delay dramatically. Hence, operating fre-
quency is severely affected by Vcc scaling. Existing so-
lutions either have high overhead or cannot be used for all
SRAM blocks.

In this paper we present the first approach to tolerate high
SRAM write delay at low Vcc in an Intel R© SilverthorneTM

in-order core by interrupting write operations, stabilizing
contents across several cycles and avoiding any read opera-
tion of those not-yet stabilized values.

IRAW avoidance increases operating frequency by 57%
at 500mV and 99% at 400mV with negligible area and
power overhead. Such frequency boost translates into 48%
speedup at 500mV and 90% at 400mV, and low EDP (0.61
EDP at 500mV and 0.33 at 400mV).

In summary, our IRAW avoidance approach enables high
operating frequencies when scaling down Vcc for in-order
cores at very low cost and with high flexibility.

8 Acknowledgements

We would like to thank Steven Hsu, Amit Agarwal, Ram
Krishnamurthy and Tiju Jacob for their feedback on the cir-
cuit level impact of Vcc scaling and their support for elec-
tric simulations. This work has been partially supported
by the Spanish Ministry of Education and Science under
grant TIN2007-61763 and the Generalitat de Catalunya un-
der grant 2009SGR1250.

References

[1] J. Abella, J. Carretero, P. Chaparro, X. Vera, and A. Gonza-
lez. Low vccmin fault-tolerant cache with highly predictable
performance. In MICRO, 2009.

[2] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Re-
ducing the complexity of the register file in dynamic super-
scalar processors. In MICRO, 2001.

[3] M. Brown and Y. Patt. Using internal redundant represen-
tations and limited bypass to support pipelined adders and
register files. In HPCA, 2002.

[4] J.-L. Cruz, A. González, M. Valero, and N. Topham.
Multiple-banked register file architectures. In ISCA, 2000.

[5] K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic. The mul-
ticluster architecture: reducing cycle time through partition-
ing. In MICRO, 1997.

[6] G. Gerosa et al. A sub 1W to 2W low power IA processor
for mobile internet devices and ultra mobile PCs in 45nm
Hi-K metal gate CMOS. In ISSCC, 2008.

[7] L. Gwennap. Digital 21264 sets new standard. Micropro-
cessor Report, 10(14):1–6, 1996.

[8] S. Hanson, B. Zhai, K. Bernstein, D. Blaauw, A. Bryant,
L. Chang, K. Das, W. Haensch, E. Nowak, and D. Sylvester.
Ultralow-voltage, minimum-energy CMOS. IBM Journal of
Research and Development, 50(4/5):469–490, 2006.

[9] M. Ishida et al. A novel 6T-SRAM cell technology designed
with rectangular patterns scalable beyond 0.18 μm genera-
tion and desirable for ultra high speed operation. In IEDM,
1998.

[10] A. Iyer and D. Marculescu. Power efficiency of voltage scal-
ing in multiple clock, multiple voltage cores. In ICCAD,
2002.

[11] T. Juan, J. Navarro, and O. Temam. Data caches for super-
scalar processors. In ICS, 1997.

[12] N. Kim, K. Flautner, D. Blaauw, and T. Mudge. Drowsy
instruction caches: leakage power reduction using dynamic
voltage scaling and cache sub-bank prediction. In MICRO,
2002.

[13] N. Kim, K. Flautner, D. Blaauw, and T. Mudge. Single-VDD

and single-VT super-drowsy techniques for low-leakage
high-performance instruction caches. In ISLPED, 2004.

[14] N. Kim and T. Mudge. The microarchitecture of a low power
register file. In ISLPED, 2003.

[15] J. Kin, M. Gupta, and W. Mangione-Smith. The filter cache:
an energy efficient memory structure. In MICRO, 1997.

[16] A. KleinOsowski et al. Latch design techniques for miti-
gating single event upsets in 65 nm SOI device technology.
IEEE Transactions on Nuclear Science, 54(6):2021–2027,
Dec. 2007.

[17] J. Kulkarni, K. Kim, and K. Roy. A 160 mv, fully differen-
tial, robust schmitt trigger based sub-threshold SRAM. In
ISLPED, 2007.

[18] Z. Liu and V. Kursun. High read stability and low leakage
cache memory cell. In ISCAS, 2007.

[19] Y. Morita et al. An area-conscious low-voltage-oriented 8T-
SRAM design under DVS environment. In VLSI, 2007.

[20] S. Palacharla. Complexity-Effective Superscalar Processors.
PhD thesis, University of Wisconsin - Madison, 1998.

[21] I. Park, M. Powell, and T. Vijaykumar. Reducing register
ports for higher speed and lower energy. In MICRO, 2002.

[22] D. Roberts, N. Kim, and T. Mudge. On-chip cache device
scaling limits and effective fault repair techniques in future
nanoscale technology. In DSD, 2007.

[23] M. Saint-Laurent, B. Mohammad, and P. Bassett. A 65-nm
pulsed latch with a single clocked transistor. In ISLPED,
2007.

[24] G. Semeraro et al. Dynamic frequency and voltage control
for a multiple clock domain microarchitecture. In MICRO,
2002.

[25] J. Tseng and K. Asanović. Banked multiported register files
for high-frequency superscalar microprocessors. In ISCA,
2003.

[26] C. Wilkerson et al. Trading off cache capacity for reliability
to enable low voltage operation. In ISCA, 2008.

[27] K. Zhang et al. A 3-GHz 70MB SRAM in 65nm CMOS
technology with integrated column-based dynamic power
supply. In ISSCC, 2005.

[28] V. Zyuban and P. Kogge. The energy complexity of register
files. In ISLPED, 1998.

