2,546 research outputs found

    Comparison of CSMA based MAC protocols of wireless sensor networks

    Full text link
    Energy conservation has been an important area of interest in Wireless Sensor networks (WSNs). Medium Access Control (MAC) protocols play an important role in energy conservation. In this paper, we describe CSMA based MAC protocols for WSN and analyze the simulation results of these protocols. We implemented S-MAC, T-MAC, B-MAC, B-MAC+, X-MAC, DMAC and Wise-MAC in TOSSIM, a simulator which unlike other simulators simulates the same code running on real hardware. Previous surveys mainly focused on the classification of MAC protocols according to the techniques being used or problem dealt with and presented a theoretical evaluation of protocols. This paper presents the comparative study of CSMA based protocols for WSNs, showing which MAC protocol is suitable in a particular environment and supports the arguments with the simulation results. The comparative study can be used to find the best suited MAC protocol for wireless sensor networks in different environments.Comment: International Journal of AdHoc Network Systems, Volume 2, Number 2, April 201

    An Energy Driven Architecture for Wireless Sensor Networks

    Full text link
    Most wireless sensor networks operate with very limited energy sources-their batteries, and hence their usefulness in real life applications is severely constrained. The challenging issues are how to optimize the use of their energy or to harvest their own energy in order to lengthen their lives for wider classes of application. Tackling these important issues requires a robust architecture that takes into account the energy consumption level of functional constituents and their interdependency. Without such architecture, it would be difficult to formulate and optimize the overall energy consumption of a wireless sensor network. Unlike most current researches that focus on a single energy constituent of WSNs independent from and regardless of other constituents, this paper presents an Energy Driven Architecture (EDA) as a new architecture and indicates a novel approach for minimising the total energy consumption of a WS

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    MH-REACH-Mote: supporting multi-hop passive radio wake-up for wireless sensor network

    Get PDF
    A passive wake-up radio in a wireless sensor network (WSN) has the advantage of increasing network lifetime by using a wake-up radio receiver (WuRx) to eliminate unnecessary idle listening. A sensor node equipped with a WuRx can operate in an ultra-low-power sleep mode, waiting for a trigger signal sent by the wake-up radio transmitter (WuTx). The passive WuRx is entirely powered by the energy harvested from radio transmissions sent by the WuTx. Therefore, it has the advantage of not consuming any energy locally, which would drain the sensor node's battery. Even so, the high amount of energy required to wake up a passive WuRx by a WuTx makes it difficult to build a multi-hop passive wake-up sensor network. In this paper, we describe and discuss our implementation of a battery-powered sensor node with multi-hop wake-up capability using passive WuRxs, called MH-REACH-Mote (Multi-hop-Range EnhAnCing energy Harvester-Mote). The MH-REACH-Mote is kept in an ultra-low-power sleep mode until it receives a wake-up trigger signal. Upon receipt, it wakes up and transmits a new trigger signal to power other passive WuRxs. We evaluate the wake-up range and power consumption of an MH-REACH-Mote through a series of field tests. Results show that the MH-REACH-Mote enables multi-hop wake-up capabilities for passive WuRxs with a wake-up range of 9.4m while requiring a reasonable power consumption for WuTx functionality. We also simulate WSN data collection scenarios with MH-REACH-Motes and compare the results with those of active wake-up sensor nodes as well as a low power listening approach. The results show that the MH-REACH-Mote enables a longer overall lifetime than the other two approaches when data is collected infrequently.Peer ReviewedPostprint (author's final draft

    Powertrace: Network-level Power Profiling for Low-power Wireless Networks

    Get PDF
    Low-power wireless networks are quickly becoming a critical part of our everyday infrastructure. Power consumption is a critical concern, but power measurement and estimation is a challenge. We present Powertrace, which to the best of our knowledge is the first system for network-level power profiling of low-power wireless systems. Powertrace uses power state tracking to estimate system power consumption and a structure called energy capsules to attribute energy consumption to activities such as packet transmissions and receptions. With Powertrace, the power consumption of a system can be broken down into individual activities which allows us to answer questions such as “How much energy is spent forwarding packets for node X?”, “How much energy is spent on control traffic and how much on critical data?”, and “How much energy does application X account for?”. Experiments show that Powertrace is accurate to 94% of the energy consumption of a device. To demonstrate the usefulness of Powertrace, we use it to experimentally analyze the power behavior of the proposed IETF standard IPv6 RPL routing protocol and a sensor network data collection protocol. Through using Powertrace, we find the highest power consumers and are able to reduce the power consumption of data collection with 24%. It is our hope that Powertrace will help the community to make empirical energy evaluation a widely used tool in the low-power wireless research community toolbox

    An energy-efficient MAC protocol to conserve energy in wireless sensor networks

    Get PDF
    Wireless Sensor Network (WSN) nodes are widely used in various sectors nowadays. WSN nodes experience a lot of problems that impact on battery life for sensor node such as, overhearing, collision,hidden node, idle listening, schedule drifts, and high latency. Moreover, WSN nodes are strongly dependent on its limited battery power, and replenishing it again is difficult as nodes are deployed in an ad-hoc manner.Energy consumption is the most important factor to determine the life of a sensor network because usually sensor nodes are driven by low battery resources. An approach to conserve energy in WSN nodes is to carefully design its Medium Access Control (MAC) protocol. Several previous work has been carried out to mitigate many problems that impact on battery life for sensor node such as overhearing, collision, and hidden node. This paper attempts to design Energy-Efficient MAC (EEMAC), a hybrid energy-efficient protocol to address the energy issues that are related to WSNs nodes.This protocol aims to reduce idle listening times as well as lowering the latency time thus reducing the energy consumption.The proposed protocol has been developed and analyzed using the ns-2 Simulator.A mathematical model was used to prove the efficiency of the proposed protocol. We have compared our proposed EE-MAC protocol with the existing contention-based IEEE 802.11 PSM protocol.The simulation results illustrate that the EE-MAC has achieved better energy conservation than the IEEE 802.11 PSM protocol
    • …
    corecore