10 research outputs found

    Using Deep Neural Networks for Smoothing Pitch Profiles in Connected Speech

    Get PDF
    This paper presents a new pitch tracking smoother based on deep neural networks (DNN). It leverages Long Short-Term Memories, a particular kind of recurrent neural network, for correcting pitch detection errors produced by state-of-the-art Pitch Detection Algorithms. The proposed system has been extensively tested using two reference benchmarks for English and exhibited very good performances in correcting pitch detection algorithms outputs when compared with the gold standard obtained with laryngographs

    Temporal contextual descriptors and applications to emotion analysis.

    Get PDF
    The current trends in technology suggest that the next generation of services and devices allows smarter customization and automatic context recognition. Computers learn the behavior of the users and can offer them customized services depending on the context, location, and preferences. One of the most important challenges in human-machine interaction is the proper understanding of human emotions by machines and automated systems. In the recent years, the progress made in machine learning and pattern recognition led to the development of algorithms that are able to learn the detection and identification of human emotions from experience. These algorithms use different modalities such as image, speech, and physiological signals to analyze and learn human emotions. In many settings, the vocal information might be more available than other modalities due to widespread of voice sensors in phones, cars, and computer systems in general. In emotion analysis from speech, an audio utterance is represented by an ordered (in time) sequence of features or a multivariate time series. Typically, the sequence is further mapped into a global descriptor representative of the entire utterance/sequence. This descriptor is used for classification and analysis. In classic approaches, statistics are computed over the entire sequence and used as a global descriptor. This often results in the loss of temporal ordering from the original sequence. Emotion is a succession of acoustic events. By discarding the temporal ordering of these events in the mapping, the classic approaches cannot detect acoustic patterns that lead to a certain emotion. In this dissertation, we propose a novel feature mapping framework. The proposed framework maps temporally ordered sequence of acoustic features into data-driven global descriptors that integrate the temporal information from the original sequence. The framework contains three mapping algorithms. These algorithms integrate the temporal information implicitly and explicitly in the descriptor\u27s representation. In the rst algorithm, the Temporal Averaging Algorithm, we average the data temporally using leaky integrators to produce a global descriptor that implicitly integrates the temporal information from the original sequence. In order to integrate the discrimination between classes in the mapping, we propose the Temporal Response Averaging Algorithm which combines the temporal averaging step of the previous algorithm and unsupervised learning to produce data driven temporal contextual descriptors. In the third algorithm, we use the topology preserving property of the Self-Organizing Maps and the continuous nature of speech to map a temporal sequence into an ordered trajectory representing the behavior over time of the input utterance on a 2-D map of emotions. The temporal information is integrated explicitly in the descriptor which makes it easier to monitor emotions in long speeches. The proposed mapping framework maps speech data of different length to the same equivalent representation which alleviates the problem of dealing with variable length temporal sequences. This is advantageous in real time setting where the size of the analysis window can be variable. Using the proposed feature mapping framework, we build a novel data-driven speech emotion detection and recognition system that indexes speech databases to facilitate the classification and retrieval of emotions. We test the proposed system using two datasets. The first corpus is acted. We showed that the proposed mapping framework outperforms the classic approaches while providing descriptors that are suitable for the analysis and visualization of humans’ emotions in speech data. The second corpus is an authentic dataset. In this dissertation, we evaluate the performances of our system using a collection of debates. For that purpose, we propose a novel debate collection that is one of the first initiatives in the literature. We show that the proposed system is able to learn human emotions from debates

    Modelling Professional Singers: A Bayesian Machine Learning Approach with Enhanced Real-time Pitch Contour Extraction and Onset Processing from an Extended Dataset.

    Get PDF
    Singing signals are one of the input data that computer systems need to analyse, and singing is part of all the cultures in the world. However, although there have been several studies on audio signal processing during the last three decades, it is still an active research area because most of the available algorithms in the literature require improvement due to the complexity of audio/music signals. More efforts are needed for analysing sounds/music in a real-time environment since the algorithms should work only on the past data, while in an offline system, all the required data are available. In addition, the complexity of the data will be increased if the audio signals come from singing due to the unique features of singing signals (such as vocal system, vibration, pitch drift, and tuning approach) that make the signals different and more complicated than those from an instrument. This thesis is mainly focused on analysing singing signals and better understanding how trained- professional singers sing the pitch frequency and duration of the notes according to their position in a piece of music and the singing technique applied. To do this, it is discovered that by incorporating singing features, such as gender and BPM, a real-time pitch detection algorithm can be found to estimate fundamental frequencies with fewer errors. In addition, two novel algorithms were proposed, one for smoothing pitch contours and another for estimating onset, offset, and the transition between notes. These two algorithms showed better results as compared to several other state-of-the-art algorithms. Moreover, a new vocal dataset that included several annotations for 2688 singing files was published. Finally, this thesis presents two models for calculating pitches and the duration of notes according to their positions in a piece of music. In conclusion, optimizing results for pitch-oriented Music Information Retrieval (MIR) algorithms necessitates adapting/selecting them based on the unique characteristics of the signals. Achieving a universal algorithm that performs exceptionally well on all data types remains a formidable challenge given the current state of technology
    corecore