3,338 research outputs found

    Turbo Decoding and Detection for Wireless Applications

    Get PDF
    A historical perspective of turbo coding and turbo transceivers inspired by the generic turbo principles is provided, as it evolved from Shannon’s visionary predictions. More specifically, we commence by discussing the turbo principles, which have been shown to be capable of performing close to Shannon’s capacity limit. We continue by reviewing the classic maximum a posteriori probability decoder. These discussions are followed by studying the effect of a range of system parameters in a systematic fashion, in order to gauge their performance ramifications. In the second part of this treatise, we focus our attention on the family of iterative receivers designed for wireless communication systems, which were partly inspired by the invention of turbo codes. More specifically, the family of iteratively detected joint coding and modulation schemes, turbo equalization, concatenated spacetime and channel coding arrangements, as well as multi-user detection and three-stage multimedia systems are highlighted

    Short Block-length Codes for Ultra-Reliable Low-Latency Communications

    Full text link
    This paper reviews the state of the art channel coding techniques for ultra-reliable low latency communication (URLLC). The stringent requirements of URLLC services, such as ultra-high reliability and low latency, have made it the most challenging feature of the fifth generation (5G) mobile systems. The problem is even more challenging for the services beyond the 5G promise, such as tele-surgery and factory automation, which require latencies less than 1ms and failure rate as low as 10910^{-9}. The very low latency requirements of URLLC do not allow traditional approaches such as re-transmission to be used to increase the reliability. On the other hand, to guarantee the delay requirements, the block length needs to be small, so conventional channel codes, originally designed and optimised for moderate-to-long block-lengths, show notable deficiencies for short blocks. This paper provides an overview on channel coding techniques for short block lengths and compares them in terms of performance and complexity. Several important research directions are identified and discussed in more detail with several possible solutions.Comment: Accepted for publication in IEEE Communications Magazin

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    Multi-level Turbo Decoding Assisted Soft Combining Aided Hybrid ARQ

    No full text
    Hybrid Automatic Repeat reQuest (ARQ) plays an essential role in error control. Combining the incorrectly received packet replicas in hybrid ARQ has been shown to reduce the resultant error probability, while improving the achievable throughput. Hence, in this contribution, multi-level turbo codes have been amalgamated both with hybrid ARQ and efficient soft combining techniques for taking into account the Log- Likelihood Ratios (LLRs) of retransmitted packet replicas. In this paper, we present a soft combining aided hybrid ARQ scheme based on multi-level turbo codes, which avoid the capacity loss of the twin-level turbo codes that are typically employed in hybrid ARQ schemes. More specifically, the proposed receiver dynamically appends an additional parallel concatenated Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm based decoder in order to fully exploit each retransmission, thereby forming a multi-level turbo decoder. Therefore, all the extrinsic information acquired during the previous BCJR operations will be used as a priori information by the additional BCJR decoders, whilst their soft output iteratively enhances the a posteriori information generated by the previous decoding stages. We also present link- level Packet Loss Ratio (PLR) and throughput results, which demonstrate that our scheme outperforms some of the previously proposed benchmarks

    Binary Message Passing Decoding of Product Codes Based on Generalized Minimum Distance Decoding

    Get PDF
    We propose a binary message passing decoding algorithm for product codes based on generalized minimum distance decoding (GMDD) of the component codes, where the last stage of the GMDD makes a decision based on the Hamming distance metric. The proposed algorithm closes half of the gap between conventional iterative bounded distance decoding (iBDD) and turbo product decoding based on the Chase--Pyndiah algorithm, at the expense of some increase in complexity. Furthermore, the proposed algorithm entails only a limited increase in data flow compared to iBDD.Comment: Invited paper to the 53rd Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, March 2019. arXiv admin note: text overlap with arXiv:1806.1090

    On the Convergence Speed of Turbo Demodulation with Turbo Decoding

    Full text link
    Iterative processing is widely adopted nowadays in modern wireless receivers for advanced channel codes like turbo and LDPC codes. Extension of this principle with an additional iterative feedback loop to the demapping function has proven to provide substantial error performance gain. However, the adoption of iterative demodulation with turbo decoding is constrained by the additional implied implementation complexity, heavily impacting latency and power consumption. In this paper, we analyze the convergence speed of these combined two iterative processes in order to determine the exact required number of iterations at each level. Extrinsic information transfer (EXIT) charts are used for a thorough analysis at different modulation orders and code rates. An original iteration scheduling is proposed reducing two demapping iterations with reasonable performance loss of less than 0.15 dB. Analyzing and normalizing the computational and memory access complexity, which directly impact latency and power consumption, demonstrates the considerable gains of the proposed scheduling and the promising contributions of the proposed analysis.Comment: Submitted to IEEE Transactions on Signal Processing on April 27, 201

    Three-Dimensional EXIT Chart Analysis of Iterative Detection Aided Coded Modulation Schemes

    No full text
    The iterative convergence of iteratively detected coded modulation schemes having different block lengths, decoding complexity and an unequal error protection capability is studied, when communicating over AWGNchannels using 8PSK modulation. More specifically, the coded modulation schemes investigated include Multilevel Coding (MLC), Trellis Coded Modulation (TCM), Turbo Trellis Coded Modulation (TTCM), Bit-Interleaved Coded Modulation (BICM) as well as Bit-Interleaved Coded Modulation employing Iterative Decoding (BICM-ID). A novel three dimensional EXIT chart was introduced for studying the iterative convergence behaviour of the Multistage Decoding (MSD) scheme used in MLC

    High-Rate Space-Time Coded Large MIMO Systems: Low-Complexity Detection and Channel Estimation

    Full text link
    In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-MIMO systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16x16 and 32x32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.Comment: v3: Performance/complexity comparison of the proposed scheme with other large-MIMO architectures/detectors has been added (Sec. IV-D). The paper has been accepted for publication in IEEE Journal of Selected Topics in Signal Processing (JSTSP): Spl. Iss. on Managing Complexity in Multiuser MIMO Systems. v2: Section V on Channel Estimation is update

    Turbo Detection of Space-time Trellis-Coded Constant Bit Rate Vector-Quantised Videophone System using Reversible Variable-Length Codes, Convolutional Codes and Turbo Codes

    No full text
    In this treatise we characterise the achievable performance of a proprietary video transmission system, which employs a Constant Bit Rate (CBR) video codec that is concatenated with one of three error correction codecs, namely a Reversible Variable-Length Code (RVLC), a Convolutional Code (CC) or a convolutional-based Turbo Code (TC). In our investigations, the CBR video codec was invoked in conjunction with Space-Time Trellis Coding (STTC) designed for transmission over a dispersive Rayleigh fading channel. At the receiver, the channel equaliser, the STTC decoder and the RVLC, CC or TC decoder, as appropriate, employ the Max-Log Maximum A-Posteriori (MAP) algorithm and their operations are performed in an iterative 'turbo-detection' fashion. The systems were designed for maintaining similar error-free video reconstruction qualities, which were found to be subjectively pleasing at a Peak Signal to Noise Ratio (PSNR) of 30.6~dB, at a similar decoding complexity per decoding iteration. These design criteria were achieved by employing differing transmission rates, with the CC- and TC-based systems having a 22% higher bandwidth requirement. The results demonstrated that the TC-, RVLC- and CC-based systems achieve acceptable subjective reconstructed video quality associated with an average PSNR in excess of 30~dB for Eb/N0E_b/N_0 values above 4.6~dB, 6.4~dB and 7.7~dB, respectively. The design choice between the TC- and RVLC-based systems constitutes a trade-off between the increased error resilience of the TC-based scheme and the reduced bandwidth requirement of the RVLC-based scheme
    corecore