41 research outputs found

    Multiobjective Optimization of Non-Smooth PDE-Constrained Problems

    Full text link
    Multiobjective optimization plays an increasingly important role in modern applications, where several criteria are often of equal importance. The task in multiobjective optimization and multiobjective optimal control is therefore to compute the set of optimal compromises (the Pareto set) between the conflicting objectives. The advances in algorithms and the increasing interest in Pareto-optimal solutions have led to a wide range of new applications related to optimal and feedback control - potentially with non-smoothness both on the level of the objectives or in the system dynamics. This results in new challenges such as dealing with expensive models (e.g., governed by partial differential equations (PDEs)) and developing dedicated algorithms handling the non-smoothness. Since in contrast to single-objective optimization, the Pareto set generally consists of an infinite number of solutions, the computational effort can quickly become challenging, which is particularly problematic when the objectives are costly to evaluate or when a solution has to be presented very quickly. This article gives an overview of recent developments in the field of multiobjective optimization of non-smooth PDE-constrained problems. In particular we report on the advances achieved within Project 2 "Multiobjective Optimization of Non-Smooth PDE-Constrained Problems - Switches, State Constraints and Model Order Reduction" of the DFG Priority Programm 1962 "Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization"

    Model Order Reduction by Proper Orthogonal Decomposition

    Get PDF
    We provide an introduction to POD-MOR with focus on (nonlinear) parametric PDEs and (nonlinear) time-dependent PDEs, and PDE constrained optimization with POD surrogate models as application. We cover the relation of POD and SVD, POD from the infinite-dimensional perspective, reduction of nonlinearities, certification with a priori and a posteriori error estimates, spatial and temporal adaptivity, input dependency of the POD surrogate model, POD basis update strategies in optimal control with surrogate models, and sketch related algorithmic frameworks. The perspective of the method is demonstrated with several numerical examples.Comment: arXiv admin note: substantial text overlap with arXiv:1701.0505

    Model Order Reduction by Proper Orthogonal Decomposition

    Get PDF

    Space-time POD-Galerkin approach for parametric flow control

    Full text link
    In this contribution we propose reduced order methods to fast and reliably solve parametrized optimal control problems governed by time dependent nonlinear partial differential equations. Our goal is to provide a tool to deal with the time evolution of several nonlinear optimality systems in many-query context, where a system must be analysed for various physical and geometrical features. Optimal control can be used in order to fill the gap between collected data and mathematical model and it is usually related to very time consuming activities: inverse problems, statistics, etc. Standard discretization techniques may lead to unbearable simulations for real applications. We aim at showing how reduced order modelling can solve this issue. We rely on a space-time POD-Galerkin reduction in order to solve the optimal control problem in a low dimensional reduced space in a fast way for several parametric instances. The proposed algorithm is validated with a numerical test based on environmental sciences: a reduced optimal control problem governed by viscous Shallow Waters Equations parametrized not only in the physics features, but also in the geometrical ones. We will show how the reduced model can be useful in order to recover desired velocity and height profiles more rapidly with respect to the standard simulation, not losing accuracy

    Optimality conditions in terms of Bouligand generalized differentials for a nonsmooth semilinear elliptic optimal control problem with distributed and boundary control pointwise constraints

    Full text link
    We prove a novel optimality condition in terms of Bouligand generalized differentials for a local minimizer of optimal control problems governed by a nonsmooth semilinear elliptic partial differential equation with both distributed and boundary unilateral pointwise control constraints, in which the nonlinear coefficient in the state equation is not differentiable at one point. Therefore, the Bouligand subdifferential of this nonsmooth coefficient in every point consists of one or two elements that will be used to construct the two associated Bouligand generalized derivatives of the control-to-state operator in any admissible control. We also establish the optimality conditions in the form of multiplier existence. There, in addition to the existence of the adjoint state and of the nonnegative multipliers associated with the pointwise constraints as usual, other nonnegative multipliers exist and correspond to the nondifferentiability of the control-to-state mapping. The latter type of optimality conditions shall be applied to the optimal control problems without distributed and boundary pointwise constraints to derive the so-called \emph{strong} stationarity conditions, where the sign of the associated adjoint state does not vary on the level set of the corresponding optimal state at the value of nondifferentiability.Comment: 33 page

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    Air Force Institute of Technology Research Report 2000

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, and Engineering Physics
    corecore