22,701 research outputs found

    Theory and implementation of H\mathcal{H}-matrix based iterative and direct solvers for Helmholtz and elastodynamic oscillatory kernels

    Get PDF
    In this work, we study the accuracy and efficiency of hierarchical matrix (H\mathcal{H}-matrix) based fast methods for solving dense linear systems arising from the discretization of the 3D elastodynamic Green's tensors. It is well known in the literature that standard H\mathcal{H}-matrix based methods, although very efficient tools for asymptotically smooth kernels, are not optimal for oscillatory kernels. H2\mathcal{H}^2-matrix and directional approaches have been proposed to overcome this problem. However the implementation of such methods is much more involved than the standard H\mathcal{H}-matrix representation. The central questions we address are twofold. (i) What is the frequency-range in which the H\mathcal{H}-matrix format is an efficient representation for 3D elastodynamic problems? (ii) What can be expected of such an approach to model problems in mechanical engineering? We show that even though the method is not optimal (in the sense that more involved representations can lead to faster algorithms) an efficient solver can be easily developed. The capabilities of the method are illustrated on numerical examples using the Boundary Element Method

    Reduced Complexity Filtering with Stochastic Dominance Bounds: A Convex Optimization Approach

    Full text link
    This paper uses stochastic dominance principles to construct upper and lower sample path bounds for Hidden Markov Model (HMM) filters. Given a HMM, by using convex optimization methods for nuclear norm minimization with copositive constraints, we construct low rank stochastic marices so that the optimal filters using these matrices provably lower and upper bound (with respect to a partially ordered set) the true filtered distribution at each time instant. Since these matrices are low rank (say R), the computational cost of evaluating the filtering bounds is O(XR) instead of O(X2). A Monte-Carlo importance sampling filter is presented that exploits these upper and lower bounds to estimate the optimal posterior. Finally, using the Dobrushin coefficient, explicit bounds are given on the variational norm between the true posterior and the upper and lower bounds

    State Estimation for the Individual and the Population in Mean Field Control with Application to Demand Dispatch

    Full text link
    This paper concerns state estimation problems in a mean field control setting. In a finite population model, the goal is to estimate the joint distribution of the population state and the state of a typical individual. The observation equations are a noisy measurement of the population. The general results are applied to demand dispatch for regulation of the power grid, based on randomized local control algorithms. In prior work by the authors it has been shown that local control can be carefully designed so that the aggregate of loads behaves as a controllable resource with accuracy matching or exceeding traditional sources of frequency regulation. The operational cost is nearly zero in many cases. The information exchange between grid and load is minimal, but it is assumed in the overall control architecture that the aggregate power consumption of loads is available to the grid operator. It is shown that the Kalman filter can be constructed to reduce these communication requirements,Comment: To appear, IEEE Trans. Auto. Control. Preliminary version appeared in the 54rd IEEE Conference on Decision and Control, 201

    Fast and accurate con-eigenvalue algorithm for optimal rational approximations

    Full text link
    The need to compute small con-eigenvalues and the associated con-eigenvectors of positive-definite Cauchy matrices naturally arises when constructing rational approximations with a (near) optimally small LL^{\infty} error. Specifically, given a rational function with nn poles in the unit disk, a rational approximation with mnm\ll n poles in the unit disk may be obtained from the mmth con-eigenvector of an n×nn\times n Cauchy matrix, where the associated con-eigenvalue λm>0\lambda_{m}>0 gives the approximation error in the LL^{\infty} norm. Unfortunately, standard algorithms do not accurately compute small con-eigenvalues (and the associated con-eigenvectors) and, in particular, yield few or no correct digits for con-eigenvalues smaller than the machine roundoff. We develop a fast and accurate algorithm for computing con-eigenvalues and con-eigenvectors of positive-definite Cauchy matrices, yielding even the tiniest con-eigenvalues with high relative accuracy. The algorithm computes the mmth con-eigenvalue in O(m2n)\mathcal{O}(m^{2}n) operations and, since the con-eigenvalues of positive-definite Cauchy matrices decay exponentially fast, we obtain (near) optimal rational approximations in O(n(logδ1)2)\mathcal{O}(n(\log\delta^{-1})^{2}) operations, where δ\delta is the approximation error in the LL^{\infty} norm. We derive error bounds demonstrating high relative accuracy of the computed con-eigenvalues and the high accuracy of the unit con-eigenvectors. We also provide examples of using the algorithm to compute (near) optimal rational approximations of functions with singularities and sharp transitions, where approximation errors close to machine precision are obtained. Finally, we present numerical tests on random (complex-valued) Cauchy matrices to show that the algorithm computes all the con-eigenvalues and con-eigenvectors with nearly full precision

    Second order accurate distributed eigenvector computation for extremely large matrices

    Full text link
    We propose a second-order accurate method to estimate the eigenvectors of extremely large matrices thereby addressing a problem of relevance to statisticians working in the analysis of very large datasets. More specifically, we show that averaging eigenvectors of randomly subsampled matrices efficiently approximates the true eigenvectors of the original matrix under certain conditions on the incoherence of the spectral decomposition. This incoherence assumption is typically milder than those made in matrix completion and allows eigenvectors to be sparse. We discuss applications to spectral methods in dimensionality reduction and information retrieval.Comment: Complete proofs are included on averaging performanc
    corecore