2,516 research outputs found

    Evaluation of color representation for texture analysis

    Get PDF
    Since more than 50 years texture in image material is a topic of research. Hereby, color was ignored mostly. This study compares 70 different configurations for texture analysis, using four features. For the configurations we used: (i) a gray value texture descriptor: the co-occurrence matrix and a color texture descriptor: the color correlogram, (ii) six color spaces, and (iii) several quantization schemes. A three classifier combination was used to classify the output of the configurations on the VisTex texture database. The results indicate that the use of a coarse HSV color space quantization can substantially improve texture recognition compared to various other gray and color quantization schemes

    Unsupervised Classification of Intrusive Igneous Rock Thin Section Images using Edge Detection and Colour Analysis

    Full text link
    Classification of rocks is one of the fundamental tasks in a geological study. The process requires a human expert to examine sampled thin section images under a microscope. In this study, we propose a method that uses microscope automation, digital image acquisition, edge detection and colour analysis (histogram). We collected 60 digital images from 20 standard thin sections using a digital camera mounted on a conventional microscope. Each image is partitioned into a finite number of cells that form a grid structure. Edge and colour profile of pixels inside each cell determine its classification. The individual cells then determine the thin section image classification via a majority voting scheme. Our method yielded successful results as high as 90% to 100% precision.Comment: To appear in 2017 IEEE International Conference On Signal and Image Processing Application

    Image Mining for Flower Classification by Genetic Association Rule Mining Using GLCM features

    Full text link
    Image mining is concerned with knowledge discovery in image databases. It is the extension of data mining algorithms to image processing domain. Image mining plays a vital role in extracting useful information from images. In computer aided plant identification and classification system the image mining will take a crucial role for the flower classification. The content image based on the low-level features such as color and textures are used to flower image classification. A flower image is segmented using a histogram threshold based method. The data set has different flower species with similar appearance (small inter class variations) across different classes and varying appearance (large intra class variations) within a class. Also the images of flowers are of different pose with cluttered background under varying lighting conditions and climatic conditions. The flower images were collected from World Wide Web in addition to the photographs taken up in a natural scene. The proposed method is based on textural features such as Gray level co-occurrence matrix (GLCM). This paper introduces multi dimensional genetic association rule mining for classification of flowers effectively. The image Data mining approach has four major steps: Preprocessing, Feature Extraction, Preparation of Transactional database and multi dimensional genetic association rule mining and classification. The purpose of our experiments is to explore the feasibility of data mining approach. Results will show that there is promise in image mining based on multi dimensional genetic association rule mining. It is well known that data mining techniques are more suitable to larger databases than the one used for these preliminary tests. Computer-aided method using association rule could assist people and improve the accuracy of flower identification. In particular, a Computer aided method based on association rules becomes more accurate with a larger dataset .Experimental results show that this new method can quickly and effectively mine potential association rules

    Image Information Mining Systems

    Get PDF

    Rotation invariant texture descriptors based on Gaussian Markov random fields for classification

    No full text
    Local Parameter Histograms (LPH) based on Gaussian–Markov random fields (GMRFs) have been successfully used in effective texture discrimination. LPH features represent the normalized histograms of locally estimated GMRF parameters via local linear regression. However, these features are not rotation invariant. In this paper two techniques to design rotation invariant LPH texture descriptors are discussed namely, Rotation Invariant LPH (RI-LPH) and the Isotropic LPH (I-LPH) descriptors. Extensive texture classification experiments using traditional GMRF features, LPH features, RI-LPH and I-LPH features are performed. Furthermore comparisons to the current state-of-the-art texture features are made. Classification results demonstrate that LPH, RI-LPH and I-LPH features achieve significantly better accuracies compared to the traditional GMRF features. RI-LPH descriptors give the highest classification rates and offer the best texture discriminative competency. RI-LPH and I-LPH features maintain higher accuracies in rotation invariant texture classification providing successful rotational invariance
    • …
    corecore