2,122 research outputs found

    Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-like Transforms

    Get PDF
    We propose a novel method for constructing Hilbert transform (HT) pairs of wavelet bases based on a fundamental approximation-theoretic characterization of scaling functions--the B-spline factorization theorem. In particular, starting from well-localized scaling functions, we construct HT pairs of biorthogonal wavelet bases of L^2(R) by relating the corresponding wavelet filters via a discrete form of the continuous HT filter. As a concrete application of this methodology, we identify HT pairs of spline wavelets of a specific flavor, which are then combined to realize a family of complex wavelets that resemble the optimally-localized Gabor function for sufficiently large orders. Analytic wavelets, derived from the complexification of HT wavelet pairs, exhibit a one-sided spectrum. Based on the tensor-product of such analytic wavelets, and, in effect, by appropriately combining four separable biorthogonal wavelet bases of L^2(R^2), we then discuss a methodology for constructing 2D directional-selective complex wavelets. In particular, analogous to the HT correspondence between the components of the 1D counterpart, we relate the real and imaginary components of these complex wavelets using a multi-dimensional extension of the HT--the directional HT. Next, we construct a family of complex spline wavelets that resemble the directional Gabor functions proposed by Daugman. Finally, we present an efficient FFT-based filterbank algorithm for implementing the associated complex wavelet transform.Comment: 36 pages, 8 figure

    Local interpolation schemes for landmark-based image registration: a comparison

    Full text link
    In this paper we focus, from a mathematical point of view, on properties and performances of some local interpolation schemes for landmark-based image registration. Precisely, we consider modified Shepard's interpolants, Wendland's functions, and Lobachevsky splines. They are quite unlike each other, but all of them are compactly supported and enjoy interesting theoretical and computational properties. In particular, we point out some unusual forms of the considered functions. Finally, detailed numerical comparisons are given, considering also Gaussians and thin plate splines, which are really globally supported but widely used in applications

    The Falling Factorial Basis and Its Statistical Applications

    Full text link
    We study a novel spline-like basis, which we name the "falling factorial basis", bearing many similarities to the classic truncated power basis. The advantage of the falling factorial basis is that it enables rapid, linear-time computations in basis matrix multiplication and basis matrix inversion. The falling factorial functions are not actually splines, but are close enough to splines that they provably retain some of the favorable properties of the latter functions. We examine their application in two problems: trend filtering over arbitrary input points, and a higher-order variant of the two-sample Kolmogorov-Smirnov test.Comment: Full version for the ICML paper with the same titl
    • …
    corecore