94,367 research outputs found

    Distributed Recursive Least-Squares: Stability and Performance Analysis

    Full text link
    The recursive least-squares (RLS) algorithm has well-documented merits for reducing complexity and storage requirements, when it comes to online estimation of stationary signals as well as for tracking slowly-varying nonstationary processes. In this paper, a distributed recursive least-squares (D-RLS) algorithm is developed for cooperative estimation using ad hoc wireless sensor networks. Distributed iterations are obtained by minimizing a separable reformulation of the exponentially-weighted least-squares cost, using the alternating-minimization algorithm. Sensors carry out reduced-complexity tasks locally, and exchange messages with one-hop neighbors to consent on the network-wide estimates adaptively. A steady-state mean-square error (MSE) performance analysis of D-RLS is conducted, by studying a stochastically-driven `averaged' system that approximates the D-RLS dynamics asymptotically in time. For sensor observations that are linearly related to the time-invariant parameter vector sought, the simplifying independence setting assumptions facilitate deriving accurate closed-form expressions for the MSE steady-state values. The problems of mean- and MSE-sense stability of D-RLS are also investigated, and easily-checkable sufficient conditions are derived under which a steady-state is attained. Without resorting to diminishing step-sizes which compromise the tracking ability of D-RLS, stability ensures that per sensor estimates hover inside a ball of finite radius centered at the true parameter vector, with high-probability, even when inter-sensor communication links are noisy. Interestingly, computer simulations demonstrate that the theoretical findings are accurate also in the pragmatic settings whereby sensors acquire temporally-correlated data.Comment: 30 pages, 4 figures, submitted to IEEE Transactions on Signal Processin

    Round-off error propagation in four generally applicable, recursive, least-squares-estimation schemes

    Get PDF
    The numerical robustness of four generally applicable, recursive, least-squares-estimation schemes is analyzed by means of a theoretical round-off propagation study. This study highlights a number of practical, interesting insights of widely used recursive least-squares schemes. These insights have been confirmed in an experimental study as well

    A New Recursive Least-Squares Method with Multiple Forgetting Schemes

    Full text link
    We propose a recursive least-squares method with multiple forgetting schemes to track time-varying model parameters which change with different rates. Our approach hinges on the reformulation of the classic recursive least-squares with forgetting scheme as a regularized least squares problem. A simulation study shows the effectiveness of the proposed method

    Stochastic Gradient versus Recursive Least Squares Learning

    Get PDF
    In this paper we perform an in—depth investigation of relative merits of two adaptive learning algorithms with constant gain, Recursive Least Squares (RLS) and Stochastic Gradient (SG), using the Phelps model of monetary policy as a testing ground. The behavior of the two learning algorithms is very different. RLS is characterized by a very small region of attraction of the Self—Confirming Equilibrium (SCE) under the mean, or averaged, dynamics, and “escapesâ€, or large distance movements of perceived model parameters from their SCE values. On the other hand, the SCE is stable under the SG mean dynamics in a large region. However, actual behavior of the SG learning algorithm is divergent for a wide range of constant gain parameters, including those that could be justified as economically meaningful. We explain the discrepancy by looking into the structure of eigenvalues and eigenvectors of the mean dynamics map under the SG learning. As a result of our paper, we express a warning regarding the behavior of constant gain learning algorithm in real time. If many eigenvalues of the mean dynamics map are close to the unit circle, Stochastic Recursive Algorithm which describes the actual dynamics under learning might exhibit divergent behavior despite convergent mean dynamics.constant gain adaptive learning, E—stability, recursive least squares, stochastic gradient learning

    Distributed Constrained Recursive Nonlinear Least-Squares Estimation: Algorithms and Asymptotics

    Full text link
    This paper focuses on the problem of recursive nonlinear least squares parameter estimation in multi-agent networks, in which the individual agents observe sequentially over time an independent and identically distributed (i.i.d.) time-series consisting of a nonlinear function of the true but unknown parameter corrupted by noise. A distributed recursive estimator of the \emph{consensus} + \emph{innovations} type, namely CIWNLS\mathcal{CIWNLS}, is proposed, in which the agents update their parameter estimates at each observation sampling epoch in a collaborative way by simultaneously processing the latest locally sensed information~(\emph{innovations}) and the parameter estimates from other agents~(\emph{consensus}) in the local neighborhood conforming to a pre-specified inter-agent communication topology. Under rather weak conditions on the connectivity of the inter-agent communication and a \emph{global observability} criterion, it is shown that at every network agent, the proposed algorithm leads to consistent parameter estimates. Furthermore, under standard smoothness assumptions on the local observation functions, the distributed estimator is shown to yield order-optimal convergence rates, i.e., as far as the order of pathwise convergence is concerned, the local parameter estimates at each agent are as good as the optimal centralized nonlinear least squares estimator which would require access to all the observations across all the agents at all times. In order to benchmark the performance of the proposed distributed CIWNLS\mathcal{CIWNLS} estimator with that of the centralized nonlinear least squares estimator, the asymptotic normality of the estimate sequence is established and the asymptotic covariance of the distributed estimator is evaluated. Finally, simulation results are presented which illustrate and verify the analytical findings.Comment: 28 pages. Initial Submission: Feb. 2016, Revised: July 2016, Accepted: September 2016, To appear in IEEE Transactions on Signal and Information Processing over Networks: Special Issue on Inference and Learning over Network

    On the stability of recursive least squares in the Gauss-Markov model

    Get PDF
    This exercice provides all eigenvalues and eigenvectors of the autoregressive matrix found in classical recursive least square theory.Linear Regression Model, Recursive Least Squares

    Recursive least squares for online dynamic identification on gas turbine engines

    Get PDF
    Online identification for a gas turbine engine is vital for health monitoring and control decisions because the engine electronic control system uses the identified model to analyze the performance for optimization of fuel consumption, a response to the pilot command, as well as engine life protection. Since a gas turbine engine is a complex system and operating at variant working conditions, it behaves nonlinearly through different power transition levels and at different operating points. An adaptive approach is required to capture the dynamics of its performance
    corecore