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Problem and Motivation

Consider the classical model yn = Xnβ + εn where Xn is an n × p real

matrix of fixed regressors, yn (n×1) a response vector, β is a p×1 vector of

unknown coefficients, rk(Xn) = p for n ≥ p. Let β̂(n) denote the ordinary

least squares estimate of β obtained from n observations, with n ≥ p, and

assume εn (n × 1) is a vector of non-observable random disturbances with

expectation 0 and variance σ2In.

An updating formula for β̂(n + 1) as a function of β̂(n) is

β̂(n + 1)− β = W−1V (β̂(n)− β) + w, n = p, p + 1, . . . (1)

where V ≡ X ′
nXn, W ≡ X ′

n+1Xn+1, w ≡ W−1xεn+1, and x denotes the

vector of new observations at the values of the explanatory variables. Eq.

(1) arises for example in Kalman filtering and recursive least squares theo-

ries, where the unknown β is considered as time-varying states of dynamic

system (see the discussion in Kianifard and Swallow, 1996) and W−1V is

often developed as Ip − (1 + c)−1V −1xx′; c equals x′V −1x.

This exercice provides some properties of W−1V , with all its eigenvalues

and eigenvectors. Let A ≡ W−1V have eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λp.

Show that

(i) these eigenvalues are real, and that

(ii) λ1 = 1/(1 + c), λ2 = λ3 = · · · = λp = 1.
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Solution and Discussion

(i) A is the product between two real symmetric matrices. Let λ be an

eigenvalue of A, and u+iv an associated eigenvector, where i2 = −1. Then

A(u + iv) = λ(u + iv).

Premultiplying both sides of this equation with W leads to

V (u + iv) = λW (u + iv).

As W = V + xx′ therefore the previous equation becomes

(1− λ)V (u + iv) = λxx′(u + iv).

Premultiply both sides with (u − iv)′. Because of the symmetry of V we

obtain

(1− λ)(u′V u + v′V v) = λ((u′x)2 + (v′x)2).

This implies that λ is real.
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(ii) The following determinant

|Ip −A| = |Ip −W−1V |

= |W−1(W − V )|

= |W−1| · |xx′|

= |W |−1 · 0

= 0

shows λ = 1 is a root of the characteristic equation |λIp −A| = 0. Now,

let z be an eigenvector of A associated with the eigenvalue 1; therefore
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W−1V z = z or V z = Wz, which from the definition of W implies

0
(p×1)

= xx′z,

showing z is orthogonal to x. Remaining eigenvalues of A are given using

Wolkowicz and Styan’s inequalities. We need trace(A).

trace(A) = trace(W−1V )

= trace(W−1(W − xx′)

= trace(Ip −W−1xx′)

= p− x′W−1x.

Moreover, premultiplying W = V + xx′ by x′W−1 and postmultiplying it

by V −1x implies x′W−1x = c/(1 + c). Consequently

trace(A) = p− c/(1 + c),

and it can be shown x is an eigenvector of A and 1/(1 + c) the associated

eigenvalue. Premultiplying A with x′ gives

x′A = x′(Ip −W−1xx′)

= x′ − (x′W−1x)x′

= (1− c

1 + c
)x′

=
1

1 + c
x′.

As A has real eigenvalues we can apply the inequalities of Wolkowicz and

Styan reproduced in Magnus and Neudecker (1991, p. 239) to find the order

of multiplicity of previously found eigenvalues:

m− s(p− 1)1/2 ≤ λ1 ≤ m− s

(p− 1)1/2

m +
s

(p− 1)1/2
≤ λp ≤ m + s(p− 1)1/2,
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where m = (1/p)trace(A) and s2 = (1/p)trace(A2)−m2.

We obtain

1/(1 + c) ≤ λ1 ≤ 1− 2
p

c

1 + c
(2)

1 ≤ λp ≤ 1 +
(p− 2)

p

c

1 + c
. (3)

From Theorem 4 in Magnus and Neudecker (1991, p. 203),

λ1 ≤ x′Ax

x′x
≤ λp

⇔ λ1 ≤ x′(Ip −W−1xx′)x
x′x

≤ λp

⇔ λ1 ≤ 1− x′W−1x ≤ λp

⇔ λ1 ≤ 1− c

1 + c
≤ λp

⇔ λ1 ≤ 1
1 + c

≤ λp.

Combination of Eq. (2) and this result gives λ1 = 1/(1 + c), which implies

equality holds on the left of Eq. (3), that is λp = 1 and the p − 1 largest

eigenvalues are equal (Magnus and Neudecker, 1991, p. 239).
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