8 research outputs found

    Recursive generation of simple planar 5-regular graphs and pentangulations

    Get PDF
    We describe how the 5-regular simple planar graphs can all be obtained from an elementary family of starting graphs by repeatedly applying a few local expansion operations. The proof uses an amalgam of theory and computation. By incorporating the recursion into the canonical construc- tion path method of isomorph rejection, a generator of non-isomorphic embedded 5-regular planar graphs is obtained with time complexity O(n2) per isomorphism class. A similar result is obtained for simple planar pen- tangulations with minimum degree 2

    Recursive generation of simple planar 5-regular graphs and pentangulations

    Full text link

    Locally Recoverable Codes From Planar Graphs

    Get PDF
    In this paper we apply Kadhe and Calderbank's definition of LRCs from convex polyhedra and planar graphs [4] to analyze the codes resulting from 3-connected regular and almost regular planar graphs. The resulting edge codes are locally recoverable with availability two. We prove that the minimum distance of planar graph LRCs is equal to the girth of the graph, and we also establish a new bound on the rate of planar graph edge codes. Constructions of regular and almost regular planar graphs are given, and their associated code parameters are determined. In certain cases, the code families meet the rate bound

    Packing Plane Perfect Matchings into a Point Set

    Full text link
    Given a set PP of nn points in the plane, where nn is even, we consider the following question: How many plane perfect matchings can be packed into PP? We prove that at least log2n2\lceil\log_2{n}\rceil-2 plane perfect matchings can be packed into any point set PP. For some special configurations of point sets, we give the exact answer. We also consider some extensions of this problem

    Hamiltonian cycles and 1-factors in 5-regular graphs

    Full text link
    It is proven that for any integer g0g \ge 0 and k{0,,10}k \in \{ 0, \ldots, 10 \}, there exist infinitely many 5-regular graphs of genus gg containing a 1-factorisation with exactly kk pairs of 1-factors that are perfect, i.e. form a hamiltonian cycle. For g=0g = 0, this settles a problem of Kotzig from 1964. Motivated by Kotzig and Labelle's "marriage" operation, we discuss two gluing techniques aimed at producing graphs of high cyclic edge-connectivity. We prove that there exist infinitely many planar 5-connected 5-regular graphs in which every 1-factorisation has zero perfect pairs. On the other hand, by the Four Colour Theorem and a result of Brinkmann and the first author, every planar 4-connected 5-regular graph satisfying a condition on its hamiltonian cycles has a linear number of 1-factorisations each containing at least one perfect pair. We also prove that every planar 5-connected 5-regular graph satisfying a stronger condition contains a 1-factorisation with at most nine perfect pairs, whence, every such graph admitting a 1-factorisation with ten perfect pairs has at least two edge-Kempe equivalence classes. The paper concludes with further results on edge-Kempe equivalence classes in planar 5-regular graphs.Comment: 27 pages, 13 figures; corrected figure
    corecore