8,315 research outputs found

    Recursive filtering of images with symmetric extension

    Get PDF
    Recursive filters are widely used in image analysis due to their efficiency and simple implementation. However these filters have an initialisation problem which either produces unusable results near the image boundaries or requires costly approximate solutions such as extending the boundary manually. In this paper, we describe a method for the recursive filtering of symmetrically extended images for filters with symmetric denominator. We begin with an analysis of symmetric extensions and their effect on non-recursive filtering operators. Based on the non-recursive case, we derive a formulation of recursive filtering on symmetric domains as a linear but spatially varying implicit operator. We then give an efficient method for decomposing and solving the linear implicit system, along with a proof that this decomposition always exists. This decomposition needs to be performed only once for each dimension of the image. This yields a filtering which is both stable and consistent with the ideal infinite extension. The filter is efficient, requiring less computation than the standard recursive filtering. We give experimental evidence to verify these claims. (c) 2005 Elsevier B.V. All rights reserved

    Efficient and Consistent Recursive Filtering of Images with Reflective Extension

    Get PDF
    Recursive filters are commonly used in scale space construction for their efficiency and simple implementation. However these filters have an initialisation problem which either produces unusable results near the image boundaries or requires costly approximate solutions such as extending the boundary manually. In this paper, we describe a method for the recursive filtering of reflectively extended images for filters with symmetric denominator. We begin with an analysis of reflective extensions and their effect on non-recursive filtering operators. Based on the non-recursive case, we derive a formulation of recursive filtering on reflective domains as a linear but time-varying implicit operator. We then give an efficient method for decomposing and solving the linear implicit system. This decomposition needs to be performed only once for each dimension of the image. This yields a filtering which is both stable and consistent with the ideal infinite extension. The filter is efficient, requiring the same order of computation as the standard recursive filtering. We give experimental evidence to verify these claims

    Fast O(1) bilateral filtering using trigonometric range kernels

    Full text link
    It is well-known that spatial averaging can be realized (in space or frequency domain) using algorithms whose complexity does not depend on the size or shape of the filter. These fast algorithms are generally referred to as constant-time or O(1) algorithms in the image processing literature. Along with the spatial filter, the edge-preserving bilateral filter [Tomasi1998] involves an additional range kernel. This is used to restrict the averaging to those neighborhood pixels whose intensity are similar or close to that of the pixel of interest. The range kernel operates by acting on the pixel intensities. This makes the averaging process non-linear and computationally intensive, especially when the spatial filter is large. In this paper, we show how the O(1) averaging algorithms can be leveraged for realizing the bilateral filter in constant-time, by using trigonometric range kernels. This is done by generalizing the idea in [Porikli2008] of using polynomial range kernels. The class of trigonometric kernels turns out to be sufficiently rich, allowing for the approximation of the standard Gaussian bilateral filter. The attractive feature of our approach is that, for a fixed number of terms, the quality of approximation achieved using trigonometric kernels is much superior to that obtained in [Porikli2008] using polynomials.Comment: Accepted in IEEE Transactions on Image Processing. Also see addendum: https://sites.google.com/site/kunalspage/home/Addendum.pd

    Fast space-variant elliptical filtering using box splines

    Get PDF
    The efficient realization of linear space-variant (non-convolution) filters is a challenging computational problem in image processing. In this paper, we demonstrate that it is possible to filter an image with a Gaussian-like elliptic window of varying size, elongation and orientation using a fixed number of computations per pixel. The associated algorithm, which is based on a family of smooth compactly supported piecewise polynomials, the radially-uniform box splines, is realized using pre-integration and local finite-differences. The radially-uniform box splines are constructed through the repeated convolution of a fixed number of box distributions, which have been suitably scaled and distributed radially in an uniform fashion. The attractive features of these box splines are their asymptotic behavior, their simple covariance structure, and their quasi-separability. They converge to Gaussians with the increase of their order, and are used to approximate anisotropic Gaussians of varying covariance simply by controlling the scales of the constituent box distributions. Based on the second feature, we develop a technique for continuously controlling the size, elongation and orientation of these Gaussian-like functions. Finally, the quasi-separable structure, along with a certain scaling property of box distributions, is used to efficiently realize the associated space-variant elliptical filtering, which requires O(1) computations per pixel irrespective of the shape and size of the filter.Comment: 12 figures; IEEE Transactions on Image Processing, vol. 19, 201

    Telescoping Recursive Representations and Estimation of Gauss-Markov Random Fields

    Full text link
    We present \emph{telescoping} recursive representations for both continuous and discrete indexed noncausal Gauss-Markov random fields. Our recursions start at the boundary (a hypersurface in Rd\R^d, d≥1d \ge 1) and telescope inwards. For example, for images, the telescoping representation reduce recursions from d=2d = 2 to d=1d = 1, i.e., to recursions on a single dimension. Under appropriate conditions, the recursions for the random field are linear stochastic differential/difference equations driven by white noise, for which we derive recursive estimation algorithms, that extend standard algorithms, like the Kalman-Bucy filter and the Rauch-Tung-Striebel smoother, to noncausal Markov random fields.Comment: To appear in the Transactions on Information Theor

    Constant-time filtering using shiftable kernels

    Full text link
    It was recently demonstrated in [5] that the non-linear bilateral filter [14] can be efficiently implemented using a constant-time or O(1) algorithm. At the heart of this algorithm was the idea of approximating the Gaussian range kernel of the bilateral filter using trigonometric functions. In this letter, we explain how the idea in [5] can be extended to few other linear and non-linear filters [14, 17, 2]. While some of these filters have received a lot of attention in recent years, they are known to be computationally intensive. To extend the idea in [5], we identify a central property of trigonometric functions, called shiftability, that allows us to exploit the redundancy inherent in the filtering operations. In particular, using shiftable kernels, we show how certain complex filtering can be reduced to simply that of computing the moving sum of a stack of images. Each image in the stack is obtained through an elementary pointwise transform of the input image. This has a two-fold advantage. First, we can use fast recursive algorithms for computing the moving sum [15, 6], and, secondly, we can use parallel computation to further speed up the computation. We also show how shiftable kernels can also be used to approximate the (non-shiftable) Gaussian kernel that is ubiquitously used in image filtering.Comment: Accepted in IEEE Signal Processing Letter
    • …
    corecore